Skip to main content

Advertisement

Log in

Rationale for B cell targeting in SLE

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

B cells are central pathogenic players in systemic lupus erythematosus and multiple other autoimmune diseases through antibody production as well as antibody independent function. At the same time, B cells are known to play important regulatory functions that may protect against autoimmune manifestations. Yet, the functional role of different B cell populations and their contribution to disease remain to be understood. The advent of agents that specifically target B cells, in particular anti-CD20 and ant-BLyS antibodies, have demonstrated the efficacy of this approach for the treatment of human autoimmunity. The analysis of patients treated with these and other B cell agents provides a unique opportunity to understand the correlates of clinical response and the significance of different B cell subsets. Here, we discuss this information and how it could be used to better understand SLE and improve the rational design of B cell-directed therapies in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan AC (2011) B cell immunotherapy in autoimmunity—2010 update. Mol Immunol 48(11):1344–1347

    Article  CAS  PubMed  Google Scholar 

  2. Manjarrez-Orduno N, Quach TD, Sanz I (2009) B cells and immunological tolerance. J Invest Dermatol 129(2):278–288

    Article  CAS  PubMed  Google Scholar 

  3. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581

    Article  CAS  PubMed  Google Scholar 

  4. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CG, St Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, Specks U (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363(3):221–232. doi:10.1056/NEJMoa0909905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hahn BH (2013) Belimumab for systemic lupus erythematosus. N Engl J Med 368(16):1528–1535. doi:10.1056/NEJMct1207259

    Article  CAS  PubMed  Google Scholar 

  6. Merrill JT, Buyon JP, Furie RA, Latinis KM, Gordon C, Hsieh H-J, Brunetta PG (2011) Assessment of flares in lupus patients enrolled in a phase II/III study of rituximab (EXPLORER). Lupus. doi:10.1177/0961203310395802

    Google Scholar 

  7. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, Maciuca R, Zhang D, Garg JP, Brunetta P, Appel G, Group LI (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 64(4):1215–1226. doi:10.1002/art.34359

    Article  CAS  PubMed  Google Scholar 

  8. Dörner T, Isenberg D, Jayne D, Wiendl H, Zillikens D, Burmester G (2009) Current status on B-cell depletion therapy in autoimmune diseases other than rheumatoid arthritis. Autoimmun Rev 9(2):82–89. doi:10.1016/j.autrev.2009.08.007

    Article  PubMed  Google Scholar 

  9. Faurschou M, Jayne DRW (2013) Anti–B cell antibody therapies for inflammatory rheumatic diseases. Annu Rev Med. doi:10.1146/annurev-med-070912-133235

    PubMed  Google Scholar 

  10. Sanz I (2014) Pharmacological effects and mechanisms of action of agents blocking B cells. In: Bosch X, Ramos-Casals M, Khamashta MA (eds) Drugs targeting B-cells in autoimmune diseases. Milestones in Drug Therapy. Springer Basel, pp 37–64. doi:10.1007/978-3-0348-0706-7_3

  11. Hiepe F, Dorner T, Hauser AE, Hoyer BF, Mei H, Radbruch A (2011) Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol advance online publication

  12. Lund FE (2008) Cytokine-producing B lymphocytes—key regulators of immunity. Curr Opin Immunol 20(3):332–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fillatreau S, Gray D, Anderton SM (2008) Not always the bad guys: B cells as regulators of autoimmune pathology. Nat Rev Immunol 8:391–397

    Article  CAS  PubMed  Google Scholar 

  14. Zhong X, Gao W, Degauque N, Bai C, Lu Y, Kenny J, Oukka M, Strom TB, Rothstein TL (2007) Reciprocal generation of Th1/Th17 and Treg by B1 and B2 B cells. Eur J Immunol 9999(9999):NA

  15. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, Johnson LL, Swain SL, Lund FE (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1(6):475–482

    Article  CAS  PubMed  Google Scholar 

  16. Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, Mauri C (2013) CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5(173):173ra123. doi:10.1126/scitranslmed.3005407

    Article  Google Scholar 

  17. Chen X, Jensen PE (2007) Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3+ CD4 T cells. J Immunol 179(4):2046–2050

    Article  CAS  PubMed  Google Scholar 

  18. Olson TS, Bamias G, Naganuma M, Rivera-Nieves J, Burcin TL, Ross W, Morris MA, Pizarro TT, Ernst PB, Cominelli F, Ley K (2004) Expanded B cell population blocks regulatory T cells and exacerbates ileitis in a murine model of Crohn disease. J Clin Invest 114(3):389–398. doi:10.1172/jci200420855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yanaba K, Bouaziz J-D, Haas KM, Poe JC, Fujimoto M, Tedder TF (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28(5):639–650

    Article  CAS  PubMed  Google Scholar 

  20. Iwata Y, Matsushita T, Horikawa M, DiLillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117(2):530–541. doi:10.1182/blood-2010-07-294249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 32(1):129–140. doi:10.1016/j.immuni.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  22. Bosma A, Abdel-Gadir A, Isenberg David A, Jury Elizabeth C, Mauri C (2012) Lipid-antigen presentation by CD1d+ B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36(3):477–490. doi:10.1016/j.immuni.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  23. Martin F, Chan AC (2006) B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 24(1)

  24. Lindsley RC, Thomas M, Srivastava B, Allman D (2007) Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood 109(6):2521–2528. doi:10.1182/blood-2006-04-018085

    Article  CAS  PubMed  Google Scholar 

  25. Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, Cambier JC (2006) Identification of anergic B cells within a wild-type repertoire. Immunity 25(6):953–962

    Article  CAS  PubMed  Google Scholar 

  26. Teague BN, Pan Y, Mudd PA, Nakken B, Zhang Q, Szodoray P, Kim-Howard X, Wilson PC, Farris AD (2007) Cutting edge: transitional T3 B cells do not give rise to mature b cells, have undergone selection, and are reduced in murine lupus. J Immunol 178(12):7511–7515

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava B, Quinn WJ III, Hazard K, Erikson J, Allman D (2005) Characterization of marginal zone B cell precursors. J Exp Med 202(9):1225–1234. doi:10.1084/jem.20051038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ettinger R, Sims GP, Robbins R, Withers D, Fischer RT, Grammer AC, Kuchen S, Lipsky PE (2007) IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol 178(5):2872–2882

    Article  CAS  PubMed  Google Scholar 

  29. Weller C-ARJ-CW (2005) Splenic marginal zone B cells in humans: where do they mutate their Ig receptor? Eur J Immunol 35(10):2789–2792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, Conley ME, Plebani A, Kumararatne DS, Bonnet D, Tournilhac O, Tchernia G, Steiniger B, Staudt LM, Casanova J-L, Reynaud C-A, Weill J-C (2004) Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a pre-diversified immunoglobulin repertoire. Blood:2004-2001-0346

  31. Griffin D, Rothstein TL (2012) Human B1 cell frequency: isolation and analysis of human B1 cells. Frontiers in immunology 3. doi:10.3389/fimmu.2012.00122

  32. Descatoire M, Weill J-C, Reynaud C-A, Weller S (2011) A human equivalent of mouse B-1 cells? J Exp Med 208(13):2563–2564. doi:10.1084/jem.20112232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Tangye SG (2013) To B1 or not to B1: that really is still the question! Blood 121(26):5109–5110. doi:10.1182/blood-2013-05-500074

    Article  CAS  PubMed  Google Scholar 

  34. Griffin DO, Rothstein TL (2011) A small CD11b+ human B1 cell subpopulation stimulates T cells and is expanded in lupus. J Exp Med 208(13):2591–2598. doi:10.1084/jem.20110978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Griffin DO, Rothstein TL (2012) Human “orchestrator” CD11b(+) B1 cells spontaneously secrete interleukin-10 and regulate T-cell activity. Mol Med 18:1003–1008. doi:10.2119/molmed.2012.00203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V, Nussenzweig MC (2005) Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 201(5):703–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Quách TD, Manjarrez-Orduño N, Adlowitz DG, Silver L, Yang H, Wei C, Milner ECB, Sanz I (2011) Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. J Immunol 186(8):4640–4648. doi:10.4049/jimmunol.1001946

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lesley R, Xu Y, Kalled SL, Hess DM, Schwab SR, Shu HB, Cyster JG (2004) Reduced competitiveness of autoantigen-engaged b cells due to increased dependence on BAFF. Immunity 20(4):441–453

    Article  CAS  PubMed  Google Scholar 

  39. Cancro MP (2004) Tipping the scales of selection with BAFF. Immunity 20(6):655–656

    Article  CAS  PubMed  Google Scholar 

  40. Scholz J, Oropallo M, Sindhava V, Goenka R, Cancro M (2013) The role of B lymphocyte stimulator in B cell biology: implications for the treatment of lupus. Lupus 22(4):350–360. doi:10.1177/0961203312469453

    Article  CAS  PubMed  Google Scholar 

  41. Chan TD, Gatto D, Wood K, Camidge T, Basten A, Brink R (2009) Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J Immunol 183(5):3139–3149. doi:10.4049/jimmunol.0901690

    Article  CAS  PubMed  Google Scholar 

  42. Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R (2006) Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J Exp Med 203(4):1081–1091. doi:10.1084/jem.20060087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Vinuesa CG, Sanz I, Cook MC (2009) Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 9(12):845–857. doi:10.1038/nri2637

    Article  CAS  PubMed  Google Scholar 

  44. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Dorner T, Hiepe F (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6(10):741–750

    Article  CAS  PubMed  Google Scholar 

  45. Dogan I, Bertocci B, Vilmont V, Delbos F, Megret J, Storck S, Reynaud C-A, Weill J-C (2009) Multiple layers of B cell memory with different effector functions. Nat Immunol 10(12):1292–1299, http://www.nature.com/ni/journal/v10/n12/suppinfo/ni.1814_S1.html

    Article  CAS  PubMed  Google Scholar 

  46. Kaji T, Ishige A, Hikida M, Taka J, Hijikata A, Kubo M, Nagashima T, Takahashi Y, Kurosaki T, Okada M, Ohara O, Rajewsky K, Takemori T (2012) Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J Exp Med 209(11):2079–2097. doi:10.1084/jem.20120127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Taylor JJ, Pape KA, Jenkins MK (2012) A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J Exp Med 209(3):597–606. doi:10.1084/jem.20111696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bernasconi NL, Onai N, Lanzavecchia A (2003) A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood:2002-2011-3569

  49. Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298(5601):2199–2202

    Article  CAS  PubMed  Google Scholar 

  50. Calero I, Nieto JA, Sanz I (2010) B cell therapies for rheumatoid arthritis: beyond B cell depletion. Rheum Dis Clin N Am 36(2):325–343

    Article  Google Scholar 

  51. Calero I, Sanz I (2010) Targeting B cells for the treatment of SLE: the beginning of the end or the end of the beginning? Discov Med 10(54):416–424

    PubMed  Google Scholar 

  52. Sanz I, Lee FE (2010) B cells as therapeutic targets in SLE. Nat Rev Rheumatol 6(6):326–337. doi:10.1038/nrrheum.2010.68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ramos-Casals M, Sanz I, Bosch X, Stone JH, Khamashta MA (2012) B-cell-depleting therapy in systemic lupus erythematosus. Am J Med 125(4):327–336. doi:10.1016/j.amjmed.2011.09.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I (2012) Advances in human B cell phenotypic profiling. Front Immunol 3:302. doi:10.3389/fimmu.2012.00302

    Article  PubMed Central  PubMed  Google Scholar 

  55. Kaminski DA, Wei C, Rosenberg AF, Lee FE, Sanz I (2012) Multiparameter flow cytometry and bioanalytics for B cell profiling in systemic lupus erythematosus. Methods Mol Biol 900:109–134. doi:10.1007/978-1-60761-720-4_6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wei C, Jung J, Sanz I (2011) OMIP-003: phenotypic analysis of human memory B cells. Cytometry Part A. doi:10.1002/cyto.a.21112

    Google Scholar 

  57. Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, Cai J, Kong YM, Sadat E, Thomson E, Dunn P, Seegmiller AC, Karandikar NJ, Tipton CM, Mosmann T, Sanz I, Scheuermann RH (2010) Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom 78B(S1):S69–S82. doi:10.1002/cyto.b.20554

    Article  CAS  Google Scholar 

  58. Palanichamy A, Bernard J, Owen T, Zheng B, Conley T, Quach T, Wei C, Looney J, Sanz I, Anolik JH (2008) Characterization of human late transitional B cells: implications for systemic lupus. Arthritis Rheum 58(9):S446

    Google Scholar 

  59. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, Lee EH, Milner EC, Sanz I (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178(10):6624–6633

    Article  CAS  PubMed  Google Scholar 

  60. Ehrhardt GRA, Hsu JT, Gartland L, Leu C-M, Zhang S, Davis RS, Cooper MD (2005) Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J Exp Med 202(6):783–791. doi:10.1084/jem.20050879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O’Shea MA, Roby G, Kottilil S, Arthos J, Proschan MA, Chun T-W, Fauci AS (2008) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205(8):1797–1805. doi:10.1084/jem.20072683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Berkowska MA, Driessen GJA, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A, He B, Biermann K, Lange JF, van der Burg M, van Dongen JJM, van Zelm MC (2011) Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 118(8):2150–2158. doi:10.1182/blood-2011-04-345579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950

    Article  CAS  PubMed  Google Scholar 

  64. O’Garra A, Chang R, Go N, Hastings R, Haughton G, Howard M (1992) Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol 22(3):711–717. doi:10.1002/eji.1830220314

    Article  PubMed  Google Scholar 

  65. Lenert P, Brummel R, Field E, Ashman R (2005) TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J Clin Immunol 25(1):29–40. doi:10.1007/s10875-005-0355-6

    Article  CAS  PubMed  Google Scholar 

  66. Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings DJ, Ehrenstein MR, Mauri C (2007) Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 178(12):7868–7878

    Article  CAS  PubMed  Google Scholar 

  67. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, Kim HJ, Bar-Or A (2007) Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 178(10):6092–6099

    Article  CAS  PubMed  Google Scholar 

  68. Tan EM (1989) Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 44:93–151

    Article  CAS  PubMed  Google Scholar 

  69. Jenks SA, Palmer EM, Marin EY, Hartson L, Chida AS, Richardson C, Sanz I (2013) 9G4+ autoantibodies are an important source of apoptotic cell reactivity associated with high levels of disease activity in systemic lupus erythematosus. Arthritis Rheum 65(12):3165–3175. doi:10.1002/art.38138

    Article  CAS  PubMed  Google Scholar 

  70. Cappione A 3rd, Anolik JH, Pugh-Bernard A, Barnard J, Dutcher P, Silverman G, Sanz I (2005) Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J Clin Invest 115(11):3205–3216. doi:10.1172/JCI24179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Isenberg DA, Garton M, Reichlin MW, Reichlin M (1997) Long-term follow-up of autoantibody profiles in black female lupus patients and clinical comparison with Caucasian and Asian patients. Br J Rheumatol 36(2):229–233

    Article  CAS  PubMed  Google Scholar 

  72. van Vollenhoven RF, Bieber MM, Powell MJ, Gupta PK, Bhat NM, Richards KL, Albano SA, Teng NN (1999) VH4-34 encoded antibodies in systemic lupus erythematosus: a specific diagnostic marker that correlates with clinical disease characteristics. J Rheumatol 26(8):1727–1733

    PubMed  Google Scholar 

  73. Cappione A, Pugh-Bernard A, Sanz A (2002) Lupus VH4.34-encoded antibodies bind to a B220-specific glycoform of CD45 on the surface of human B lymphocytes. Arthritis Rheum 46:S222

    Google Scholar 

  74. Pugh-Bernard AE, Silverman GJ, Cappione AJ, Villano ME, Ryan DH, Insel RA, Sanz I (2001) Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J Clin Invest 108(7):1061–1070. doi:10.1172/JCI12462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Anolik JH, Looney RJ, Lund FE, Randall TD, Sanz I (2009) Insights into the heterogeneity of human B cells: diverse functions, roles in autoimmunity, and use as therapeutic targets. Immunol Res. doi:10.1007/s12026-009-8096-7

    PubMed Central  PubMed  Google Scholar 

  76. Jenks SA, Sanz I (2009) Altered B cell receptor signaling in human systemic lupus erythematosus. Autoimmun Rev 8(3):209–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, Looney RJ, Sanz I, Anolik JH (2009) Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol 182(10):5982–5993. doi:10.4049/jimmunol.0801859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A, Hansen A, Burmester G, Diamond B, Lipsky PE, Dörner T (2008) Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 58(6):1762–1773

    Article  CAS  PubMed  Google Scholar 

  79. Vaughn SE, Kottyan LC, Munroe ME, Harley JB (2012) Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J Leukoc Biol 92(3):577–591. doi:10.1189/jlb.0212095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Cambier JC (2013) Autoimmunity risk alleles: hotspots in B cell regulatory signaling pathways. J Clin Invest:1–4. doi:10.1172/JCI69289

  81. Anolik JH, Barnard J, Cappione A, Pugh-Bernard AE, Felgar RE, Looney RJ, Sanz I (2004) Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 50(11):3580–3590

    Article  CAS  PubMed  Google Scholar 

  82. Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, Sloand JA, Rosenblatt J, Sanz I (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50(8):2580–2589

    Article  CAS  PubMed  Google Scholar 

  83. Ching KH, Burbelo PD, Gonzalez-Begne M, Roberts ME, Coca A, Sanz I, Iadarola MJ (2011) Salivary anti-Ro60 and anti-Ro52 antibody profiles to diagnose Sjogren’s Syndrome. J Dent Res. doi:10.1177/0022034510390811

    PubMed Central  PubMed  Google Scholar 

  84. Faurschou M, Jayne DRW (2014) Anti-B cell antibody therapies for inflammatory rheumatic diseases. Annu Rev Med 65(1):null. doi:10.1146/annurev-med-070912-133235

  85. Mei H, Schmidt S, Dorner T (2012) Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 14(Suppl 5):S1

    Article  PubMed Central  PubMed  Google Scholar 

  86. Sanz I (2009) Indications for rituximab in autoimmune diseases. Drug Discov Today Ther Strateg 6(1):13–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Lightstone L (2012) The landscape after LUNAR: rituximab’s crater-filled path. Arthritis Rheum 64(4):962–965. doi:10.1002/art.34362

    Article  PubMed  Google Scholar 

  88. van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS, Zhong ZJ, Freimuth W (2012) Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 71(8):1343–1349. doi:10.1136/annrheumdis-2011-200937

    Article  PubMed Central  PubMed  Google Scholar 

  89. Ginzler E, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E, Singer N (2012) Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther 14(1):R33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Wallace DJ, Kalunian K, Petri MA, Strand V, Houssiau FA, Pike M, Kilgallen B, Bongardt S, Barry A, Kelley L, Gordon C (2013) Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis. doi:10.1136/annrheumdis-2012-202760

    Google Scholar 

  91. Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, Sloand J, Rosenblatt J, Sanz I (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50(8):2580–2589

    Article  CAS  PubMed  Google Scholar 

  92. Vital EM, Dass S, Buch MH, Henshaw K, Pease CT, Martin MF, Ponchel F, Rawstron AC, Emery P (2011) B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum 63(10):3038–3047. doi:10.1002/art.30466

    Article  CAS  PubMed  Google Scholar 

  93. Miloslavsky EM, Specks U, Merkel PA, Seo P, Spiera R, Langford CA, Hoffman GS, Kallenberg CGM, St. Clair EW, Tchao NK, Viviano L, Ding L, Sejismundo LP, Mieras K, Ikle D, Jepson B, Mueller M, Brunetta P, Allen NB, Fervenza FC, Geetha D, Keogh K, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, Stone H, for the R-ITNRG (2013) Clinical outcomes of remission induction therapy for severe ANCA-associated vasculitis. Arthritis Rheum. doi:10.1002/art.38044

    Google Scholar 

  94. Cambridge G, Leandro MJ, Teodorescu M, Manson J, Rahman A, Isenberg DA, Edwards JC (2006) B cell depletion therapy in systemic lupus erythematosus: effect on autoantibody and antimicrobial antibody profiles. Arthritis Rheum 54(11):3612–3622

    Article  CAS  PubMed  Google Scholar 

  95. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis.[see comment]. N Engl J Med 358(7):676–688

    Article  CAS  PubMed  Google Scholar 

  96. Anolik J, Barnard J, Owen T, Zheng B, Kemshett S, Looney J, Sanz I (2007) Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum 56(9):3044–3056

    Article  CAS  PubMed  Google Scholar 

  97. Iwata S, Saito K, Tokunaga M, Yamaoka K, Nawata M, Yukawa S, Hanami K, Fukuyo S, Miyagawa I, Kubo S, Tanaka Y (2010) Phenotypic changes of lymphocytes in patients with systemic lupus erythematosus who are in longterm remission after B cell depletion therapy with rituximab. J Rheumatol. doi:10.3899/jrheum.100729

    Google Scholar 

  98. Sfikakis PP, Boletis JN, Lionaki S, Vigklis V, Fragiadaki V, Iniotaki A, Moutsopoulos HM (2005) Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum 52(2):501–513

    Article  CAS  PubMed  Google Scholar 

  99. van de Veerdonk FL, Lauwerys B, Marijnissen RJ, Timmermans K, Di Padova F, Koenders MI, Gutierrez-Roelens I, Durez P, Netea MG, van der Meer JWM, van den Berg WB, Joosten LAB (2011) The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum 63(6):1507–1516. doi:10.1002/art.30314

    Article  PubMed  Google Scholar 

  100. Stasi R, Cooper N, Del Poeta G, Stipa E, Evangelista ML, Abruzzese E, Amadori S (2008) Analysis of regulatory T cell changes in patients with idiopathic thrombocytopenic purpura receiving B-cell depleting therapy with rituximab. Blood:blood-2007-2012-129262. doi:10.1182/blood-2007-12-129262

  101. Stohl W, Hiepe F, Latinis KM, Thomas M, Scheinberg MA, Clarke A, Aranow C, Wellborne FR, Abud-Mendoza C, Hough DR, Pineda L, Migone T-S, Zhong ZJ, Freimuth WW, Chatham WW, on behalf of the B, Groups B-S (2012) Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 64(7):2328–2337. doi:10.1002/art.34400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Jacobi AM, Huang W, Wang T, Freimuth W, Sanz I, Furie R, Mackay M, Aranow C, Diamond B, Davidson A (2010) Effect of long-term belimumab treatment on b cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum 62(1):201–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Wallace DJ, Gordon C, Strand V, Hobbs K, Petri M, Kalunian K, Houssiau F, Tak PP, Isenberg DA, Kelley L, Kilgallen B, Barry AN, Wegener WA, Goldenberg DM (2013) Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford). doi:10.1093/rheumatology/ket129

    Google Scholar 

  104. Jacobi AM, Goldenberg DM, Hiepe F, Radbruch A, Burmester GR, Dörner T (2008) Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis 67(4):450–457. doi:10.1136/ard.2007.075762

    Article  CAS  PubMed  Google Scholar 

  105. Daridon C, Blassfeld D, Reiter K, Mei H, Giesecke C, Goldenberg D, Hansen A, Hostmann A, Frolich D, Dorner T (2010) Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther 12(6):R204

    Article  PubMed Central  PubMed  Google Scholar 

  106. Allen CDC, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, Cyster JG (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5(9):943–952, http://www.nature.com/ni/journal/v5/n9/suppinfo/ni1100_S1.html

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñaki Sanz.

Additional information

This article is a contribution to the special issue on B cell-mediated autoimmune diseases - Guest Editors: Thomas Winkler and Reinhard Voll

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz, I. Rationale for B cell targeting in SLE. Semin Immunopathol 36, 365–375 (2014). https://doi.org/10.1007/s00281-014-0430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0430-z

Keywords

Navigation