Skip to main content

Advertisement

Log in

Targeting B cells and autoantibodies in the therapy of autoimmune diseases

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

B cells and B cell-derived autoantibodies play a central role in the pathogenesis of many autoimmune diseases. Thus, depletion of B cells via monoclonal antibodies such as Rituximab is an obvious therapeutic intervention and has been used successfully in many instances. More recently, novel therapeutic options targeting either the autoantibody itself or resetting the threshold for B cell activation have become available and show promising immunomodulatory and anti-inflammatory effects in a variety of animal models. The aim of this review is to summarize these results and to provide an insight into the underlying molecular and cellular pathways of these novel therapeutic interventions targeting autoantibodies and B cells and to discuss their value for human therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wahren-Herlenius M, Dorner T (2013) Immunopathogenic mechanisms of systemic autoimmune disease. Lancet 382(9894):819–831

    CAS  PubMed  Google Scholar 

  2. Wardemann H, Nussenzweig MC (2007) B-cell self-tolerance in humans. Adv Immunol 95:83–110

    CAS  PubMed  Google Scholar 

  3. Anolik JH (2013) B cell biology: implications for treatment of systemic lupus erythematosus. Lupus 22(4):342–349

    CAS  PubMed  Google Scholar 

  4. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G et al (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17(5):610–617

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Bar-Or A, Calabresi PA, Arnold D, Markowitz C, Shafer S, Kasper LH et al (2008) Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol 63(3):395–400

    CAS  PubMed  Google Scholar 

  6. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688

    CAS  PubMed  Google Scholar 

  7. Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118(10):3420–3430

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S et al (2012) B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med 209(5):1001–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Fillatreau S, Gray D, Anderton SM (2008) Not always the bad guys: B cells as regulators of autoimmune pathology. Nat Rev Immunol 8(5):391–397

    CAS  PubMed  Google Scholar 

  10. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    CAS  PubMed  Google Scholar 

  11. DiLillo DJ, Matsushita T, Tedder TF (2010) B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 1183:38–57

    CAS  PubMed  Google Scholar 

  12. Hainz N, Thomas S, Neubert K, Meister S, Benz K, Rauh M et al (2012) The proteasome inhibitor bortezomib prevents lupus nephritis in the NZB/W F1 mouse model by preservation of glomerular and tubulointerstitial architecture. Nephron Exp Nephrol 120(2):e47–e58

    CAS  PubMed  Google Scholar 

  13. Maseda D, Meister S, Neubert K, Herrmann M, Voll RE (2008) Proteasome inhibition drastically but reversibly impairs murine lymphocyte development. Cell Death Differ 15(3):600–612

    CAS  PubMed  Google Scholar 

  14. Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K et al (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14(7):748–755

    CAS  PubMed  Google Scholar 

  15. Gomez AM, Willcox N, Molenaar PC, Buurman W, Martinez-Martinez P, De Baets MH et al (2012) Targeting plasma cells with proteasome inhibitors: possible roles in treating myasthenia gravis? Ann N Y Acad Sci 1274:48–59

    CAS  PubMed  Google Scholar 

  16. Hogarth PM (2002) Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol 14(6):798–802

    CAS  PubMed  Google Scholar 

  17. Nimmerjahn F, Ravetch JV (2008) Fc gamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47

    CAS  PubMed  Google Scholar 

  18. Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2(8):580–592

    CAS  PubMed  Google Scholar 

  19. Baerenwaldt A, Nimmerjahn F (2008) Immune regulation—Fc gamma RIIB—regulating the balance between protective and autoreactive immune responses. Immunol Cell Biol 86(6):482–484

    CAS  PubMed  Google Scholar 

  20. Bolland S, Ravetch JV (1999) Inhibitory pathways triggered by ITIM-containing receptors. Adv Immunol 72:149–177

    CAS  PubMed  Google Scholar 

  21. Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV (2002) Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(−/−) mice. J Exp Med 195(9):1167–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Daeron M, Lesourne R (2006) Negative signaling in Fc receptor complexes. Adv Immunol 89:39–86

    CAS  PubMed  Google Scholar 

  23. Nimmerjahn F, Ravetch JV (2010) Antibody-mediated modulation of immune responses. Immunol Rev 236:265–275

    CAS  PubMed  Google Scholar 

  24. Azeredo da Silveira S, Kikuchi S, Fossati-Jimack L, Moll T, Saito T, Verbeek JS et al (2002) Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J Exp Med 195(6):665–672

    CAS  PubMed  Google Scholar 

  25. Mihai S, Nimmerjahn F (2013) The role of Fc receptors and complement in autoimmunity. Autoimmun Rev 12(6):657–660

  26. Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K et al (2012) Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J Immunol 188(3):1469–1478

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Baumann U, Kohl J, Tschernig T, Schwerter-Strumpf K, Verbeek JS, Schmidt RE et al (2000) A codominant role of Fc gamma RI/III and C5aR in the reverse Arthus reaction. J Immunol 164(2):1065–1070

    CAS  PubMed  Google Scholar 

  28. Shushakova N, Skokowa J, Schulman J, Baumann U, Zwirner J, Schmidt RE et al (2002) C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Invest 110(12):1823–1830

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Skokowa J, Ali SR, Felda O, Kumar V, Konrad S, Shushakova N et al (2005) Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol 174(5):3041–3050

    CAS  PubMed  Google Scholar 

  30. Syed SN, Konrad S, Wiege K, Nieswandt B, Nimmerjahn F, Schmidt RE et al (2009) Both FcgammaRIV and FcgammaRIII are essential receptors mediating type II and type III autoimmune responses via FcRgamma-LAT-dependent generation of C5a. Eur J Immunol 39(12):3343–3356

    CAS  PubMed  Google Scholar 

  31. Podolanczuk A, Lazarus AH, Crow AR, Grossbard E, Bussel JB (2009) Of mice and men: an open-label pilot study for treatment of immune thrombocytopenic purpura by an inhibitor of Syk. Blood 113(14):3154–3160

    CAS  PubMed  Google Scholar 

  32. Clarkson SB, Kimberly RP, Valinsky JE, Witmer MD, Bussel JB, Nachman RL et al (1986) Blockade of clearance of immune complexes by an anti-Fc gamma receptor monoclonal antibody. J Exp Med 164(2):474–489

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Nimmerjahn F (2006) Activating and inhibitory FcgammaRs in autoimmune disorders. Springer Semin Immunopathol 28(4):305–319

    CAS  PubMed  Google Scholar 

  34. Ryan MH, Petrone D, Nemeth JF, Barnathan E, Bjorck L, Jordan RE (2008) Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol 45(7):1837–1846

    CAS  PubMed  Google Scholar 

  35. Collin M, Shannon O, Bjorck L (2008) IgG glycan hydrolysis by a bacterial enzyme as a therapy against autoimmune conditions. Proc Natl Acad Sci USA 105(11):4265–4270

    PubMed Central  PubMed  Google Scholar 

  36. Collin M, Olsen A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20(12):3046–3055

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Nandakumar KS, Johansson BP, Bjorck L, Holmdahl R (2007) Blocking of experimental arthritis by cleavage of IgG antibodies in vivo. Arthritis Rheum 56(10):3253–3260

    CAS  PubMed  Google Scholar 

  38. Johansson BP, Shannon O, Bjorck L (2008) IdeS: a bacterial proteolytic enzyme with therapeutic potential. PLoS One 3(2):e1692

    PubMed Central  PubMed  Google Scholar 

  39. Yang R, Otten MA, Hellmark T, Collin M, Bjorck L, Zhao MH et al (2010) Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol Dial Transplant 25(8):2479–2486

    CAS  PubMed  Google Scholar 

  40. Salama AD, Levy JB, Lightstone L, Pusey CD (2001) Goodpasture’s disease. Lancet 358(9285):917–920

    CAS  PubMed  Google Scholar 

  41. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6(9):805–815

    CAS  PubMed  Google Scholar 

  42. Tradtrantip L, Asavapanumas N, Verkman AS (2013) Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol Pharmacol 83(6):1268–1275

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    CAS  PubMed  Google Scholar 

  44. Nose M, Wigzell H (1983) Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci USA 80(21):6632–6636

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Feige MJ, Nath S, Catharino SR, Weinfurtner D, Steinbacher S, Buchner J (2009) Structure of the murine unglycosylated IgG1 Fc fragment. J Mol Biol 391(3):599–608

    CAS  PubMed  Google Scholar 

  46. Ghirlando R, Lund J, Goodall M, Jefferis R (1999) Glycosylation of human IgG-Fc: influences on structure revealed by differential scanning micro-calorimetry. Immunol Lett 68(1):47–52

    CAS  PubMed  Google Scholar 

  47. Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 406(6793):267–273

    CAS  PubMed  Google Scholar 

  48. Radaev S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD (2001) The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem 276(19):16469–16477

    CAS  PubMed  Google Scholar 

  49. Schwab I, Nimmerjahn F (2013) Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 13(3):176–189

    CAS  PubMed  Google Scholar 

  50. Leatherbarrow RJ, Rademacher TW, Dwek RA, Woof JM, Clark A, Burton DR et al (1985) Effector functions of a monoclonal aglycosylated mouse IgG2a: binding and activation of complement component C1 and interaction with human monocyte Fc receptor. Mol Immunol 22(4):407–415

    CAS  PubMed  Google Scholar 

  51. Hirose M, Vafia K, Kalies K, Groth S, Westermann J, Zillikens D et al (2012) Enzymatic autoantibody glycan hydrolysis alleviates autoimmunity against type VII collagen. J Autoimmun 39(4):304–314

    CAS  PubMed  Google Scholar 

  52. Albert H, Collin M, Dudziak D, Ravetch JV, Nimmerjahn F (2008) In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner. Proc Natl Acad Sci USA 105(39):15005–15009

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Allhorn M, Briceno JG, Baudino L, Lood C, Olsson ML, Izui S et al (2010) The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis. Blood 115(24):5080–5088

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Allhorn M, Olin AI, Nimmerjahn F, Collin M (2008) Human IgG/Fc gamma R interactions are modulated by streptococcal IgG glycan hydrolysis. PLoS One 3(1):e1413

    PubMed Central  PubMed  Google Scholar 

  55. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA et al (2002) Arthritis critically dependent on innate immune system players. Immunity 16(2):157–168

    CAS  PubMed  Google Scholar 

  56. Nimmerjahn F, Lux A, Albert H, Woigk M, Lehmann C, Dudziak D et al (2010) FcgammaRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo. Proc Natl Acad Sci USA 107(45):19396–19401

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Seeling M, Hillenhoff U, David JP, Schett G, Tuckermann J, Lux A et al (2013) Inflammatory monocytes and Fcgamma receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci USA 110(26):10729–10734

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Nandakumar KS, Collin M, Happonen KE, Croxford AM, Lundstrom SL, Zubarev RA et al (2013) Dominant suppression of inflammation by glycan-hydrolyzed IgG. Proc Natl Acad Sci USA 110(25):10252–10257

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lippi G, Mattiuzzi C, Favaloro EJ (2013) Novel and emerging therapies: thrombus-targeted fibrinolysis. Semin Thromb Hemost 39(1):48–58

    CAS  PubMed  Google Scholar 

  60. Baruah K, Bowden TA, Krishna BA, Dwek RA, Crispin M, Scanlan CN (2012) Selective deactivation of serum IgG: a general strategy for the enhancement of monoclonal antibody receptor interactions. J Mol Biol 420(1–2):1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lux A, Yu X, Scanlan CN, Nimmerjahn F (2013) Impact of immune complex size and glycosylation on IgG binding to human FcgammaRs. J Immunol 190(8):4315–4323

    CAS  PubMed  Google Scholar 

  62. Ballow M (2011) The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J Allergy Clin Immunol 127(2):315–323, quiz 24–5

    CAS  PubMed  Google Scholar 

  63. Bayry J, Negi VS, Kaveri SV (2011) Intravenous immunoglobulin therapy in rheumatic diseases. Nat Rev Rheumatol 7(6):349–359

    CAS  PubMed  Google Scholar 

  64. Imbach P (2012) Treatment of immune thrombocytopenia with intravenous immunoglobulin and insights for other diseases. A historical review. Swiss Med Wkly 142:w13593

    PubMed  Google Scholar 

  65. Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD et al (2007) Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 27(3):233–245

    CAS  PubMed  Google Scholar 

  66. Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533

    CAS  PubMed  Google Scholar 

  67. Crow AR, Brinc D, Lazarus AH (2009) New insight into the mechanism of action of IVIg: the role of dendritic cells. J Thromb Haemost 7(Suppl 1):245–248

    CAS  PubMed  Google Scholar 

  68. Crow AR, Song S, Siragam V, Lazarus AH (2006) Mechanisms of action of intravenous immunoglobulin in the treatment of immune thrombocytopenia. Pediatr Blood Cancer 47(5 Suppl):710–713

    PubMed  Google Scholar 

  69. Kazatchkine MD, Kaveri SV (2001) Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 345(10):747–755

    CAS  PubMed  Google Scholar 

  70. Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P et al (1993) Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342(8877):945–949

    CAS  PubMed  Google Scholar 

  71. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18(4):573–581

    CAS  PubMed  Google Scholar 

  72. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV (2006) Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 203(3):789–797, Epub 2006 Mar 6

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787):670–673

    CAS  PubMed  Google Scholar 

  74. Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291(5503):484–486

    CAS  PubMed  Google Scholar 

  75. Semple JW, Kim M, Hou J, McVey M, Lee YJ, Tabuchi A et al (2012) Intravenous immunoglobulin prevents murine antibody-mediated acute lung injury at the level of neutrophil reactive oxygen species (ROS) production. PLoS One 7(2):e31357

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Schwab I, Biburger M, Kronke G, Schett G, Nimmerjahn F (2012) IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur J Immunol 42(4):826–830

    CAS  PubMed  Google Scholar 

  77. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320(5874):373–376

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M et al (2012) Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med 18(9):1401–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F et al (2009) Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 106(12):4788–4792

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 475(7354):110–113

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 105(50):19571–19578

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV (2013) General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci USA 110(24):9868–9872

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Crow AR, Song S, Semple JW, Freedman J, Lazarus AH (2007) A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 109(1):155–158

    CAS  PubMed  Google Scholar 

  84. Nikolova KA, Tchorbanov AI, Djoumerska-Alexieva IK, Nikolova M, Vassilev TL (2009) Intravenous immunoglobulin up-regulates the expression of the inhibitory FcgammaIIB receptor on B cells. Immunol Cell Biol 87(7):529–533

    CAS  PubMed  Google Scholar 

  85. Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13(2):277–285

    CAS  PubMed  Google Scholar 

  86. Boross P, Arandhara VL, Martin-Ramirez J, Santiago-Raber ML, Carlucci F, Flierman R et al (2011) The inhibiting Fc receptor for IgG, FcgammaRIIB, is a modifier of autoimmune susceptibility. J Immunol 187(3):1304–1313

    CAS  PubMed  Google Scholar 

  87. Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV (1996) Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice. Nature 379(6563):346–349

    CAS  PubMed  Google Scholar 

  88. Willcocks LC, Smith KG, Clatworthy MR (2009) Low-affinity Fcgamma receptors, autoimmunity and infection. Expert Rev Mol Med 11:e24

    PubMed  Google Scholar 

  89. Willcocks LC, Carr EJ, Niederer HA, Rayner TF, Williams TN, Yang W et al (2010) A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad Sci USA 107(17):7881–7885

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Espeli M, Clatworthy MR, Bokers S, Lawlor KE, Cutler AJ, Kontgen F, et al. (2012) Analysis of a wild mouse promoter variant reveals a novel role for FcgammaRIIb in the control of the germinal center and autoimmunity. J Exp Med 209(12):2307–2319

  91. Pritchard NR, Cutler AJ, Uribe S, Chadban SJ, Morley BJ, Smith KG (2000) Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcgammaRII. Curr Biol 10(4):227–230

    CAS  PubMed  Google Scholar 

  92. McGaha TL, Sorrentino B, Ravetch JV (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307(5709):590–593

    CAS  PubMed  Google Scholar 

  93. Brownlie RJ, Lawlor KE, Niederer HA, Cutler AJ, Xiang Z, Clatworthy MR et al (2008) Distinct cell-specific control of autoimmunity and infection by FcgammaRIIb. J Exp Med 205(4):883–895

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S et al (2006) Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med 203(9):2157–2164

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Clatworthy MR, Willcocks L, Urban B, Langhorne J, Williams TN, Peshu N et al (2007) Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc Natl Acad Sci USA 104(17):7169–7174

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K et al (2005) FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 14(19):2881–2892, Epub 005 Aug 22

    CAS  PubMed  Google Scholar 

  97. Waisberg M, Tarasenko T, Vickers BK, Scott BL, Willcocks LC, Molina-Cruz A et al (2011) Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice. Proc Natl Acad Sci USA 108(3):1122–1127

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Baerenwaldt A, Lux A, Danzer H, Spriewald BM, Ullrich E, Heidkamp G, et al. (2011) Fcgamma receptor IIB (FcgammaRIIB) maintains humoral tolerance in the human immune system in vivo. Proc Natl Acad Sci USA 108(46):18772–18777

  99. Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E et al (2007) FcgammaRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol 8(4):419–429

    CAS  PubMed  Google Scholar 

  100. Schwab I, Seeling M, Biburger M, Aschermann S, Nitschke L, Nimmerjahn F (2012) B-cells and CD22 are dispensable for the immediate antiinflammatory activity of intravenous immunoglobulins in vivo. Eur J Immunol 42(12):3302–3309

  101. Seite JF, Cornec D, Renaudineau Y, Youinou P, Mageed RA, Hillion S (2010) IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116(10):1698–1704

    CAS  PubMed  Google Scholar 

  102. Nitschke L (2009) CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev 230(1):128–143

    CAS  PubMed  Google Scholar 

  103. Nitschke L (2005) The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Opin Immunol 17(3):290–297

    CAS  PubMed  Google Scholar 

  104. Heyman B (2000) Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol 18:709–737

    CAS  PubMed  Google Scholar 

  105. Dhaliwal B, Yuan D, Pang MO, Henry AJ, Cain K, Oxbrow A et al (2012) Crystal structure of IgE bound to its B-cell receptor CD23 reveals a mechanism of reciprocal allosteric inhibition with high affinity receptor FcepsilonRI. Proc Natl Acad Sci USA 109(31):12686–12691

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Crispin M, Yu X, Bowden TA (2013) Crystal structure of sialylated IgG Fc: Implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci USA 110(38):E3544–E3546

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Nimmerjahn.

Additional information

This article is a contribution to the special issue on B cell-mediated autoimmune diseases - Guest Editors: Thomas Winkler and Reinhard Voll

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, D., Lux, A., Schwab, I. et al. Targeting B cells and autoantibodies in the therapy of autoimmune diseases. Semin Immunopathol 36, 289–299 (2014). https://doi.org/10.1007/s00281-014-0427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0427-7

Keywords

Navigation