Skip to main content

Advertisement

Log in

The multiple faces of leukocyte interstitial migration

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Spatiotemporal control of leukocyte dynamics within tissues is critical for successful innate and adaptive immune responses. Homeostatic trafficking and coordinated infiltration into and within sites of inflammation and infection rely on signaling in response to extracellular cues that in turn controls a variety of intracellular protein networks regulating leukocyte motility, migration, chemotaxis, positioning, and cell–cell interaction. In contrast to mesenchymal cells, leukocytes migrate in an amoeboid fashion by rapid cycles of actin polymerization and actomyosin contraction, and their migration in tissues is generally referred to as low adhesive and nonproteolytic. The interplay of actin network expansion, contraction, and adhesion shapes the exact mode of amoeboid migration, and in this review, we explore how leukocyte subsets potentially harness the same basic biomechanical mechanisms in a cell-type-specific manner. Most of our detailed understanding of these processes derives from in vitro migration studies in three-dimensional gels and confined spaces that mimic geometrical aspects of physiological tissues. We summarize these in vitro results and then critically compare them to data from intravital imaging of leukocyte interstitial migration in mouse tissues. We outline the technical challenges of obtaining conclusive mechanistic results from intravital studies, discuss leukocyte migration strategies in vivo, and present examples of mode switching during physiological interstitial migration. These findings are also placed in the context of leukocyte migration defects in primary immunodeficiencies. This overview of both in vitro and in vivo studies highlights recent progress in understanding the molecular and biophysical mechanisms that shape robust leukocyte migration responses in physiologically complex and heterogeneous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3(11):867–878. doi:10.1038/nri1222

    Google Scholar 

  2. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6(12):1182–1190. doi:10.1038/ni1275

    PubMed  CAS  Google Scholar 

  3. Friedl P, Weigelin B (2008) Interstitial leukocyte migration and immune function. Nat Immunol 9(9):960–969. doi:10.1038/ni.f.212

    PubMed  CAS  Google Scholar 

  4. Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19. doi:10.1083/jcb.200909003

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Lämmermann T, Sixt M (2009) Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 21(5):636–644. doi:10.1016/j.ceb.2009.05.003

    PubMed  Google Scholar 

  6. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689. doi:10.1038/nri2156

    PubMed  CAS  Google Scholar 

  7. Hickey MJ, Kubes P (2009) Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol 9(5):364–375. doi:10.1038/nri2532

    PubMed  CAS  Google Scholar 

  8. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W, Parent CA, Germain RN (2013) Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498(7454):371–375. doi:10.1038/nature12175

    PubMed  Google Scholar 

  9. Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336(6089):1676–1681. doi:10.1126/science.1221063

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Madsen CD, Sahai E (2010) Cancer dissemination—lessons from leukocytes. Dev Cell 19(1):13–26. doi:10.1016/j.devcel.2010.06.013

    PubMed  CAS  Google Scholar 

  11. Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E (2013) Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 15(7):751–762. doi:10.1038/ncb2775

    PubMed  CAS  Google Scholar 

  12. Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A (2010) Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 18(2):226–236. doi:10.1016/j.devcel.2009.11.015

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Shelef MA, Tauzin S, Huttenlocher A (2013) Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 256(1):269–281. doi:10.1111/imr.12124

    PubMed  CAS  Google Scholar 

  14. Peri F (2010) Breaking ranks: how leukocytes react to developmental cues and tissue injury. Curr Opin Genet Dev 20(4):416–419. doi:10.1016/j.gde.2010.05.002

    PubMed  CAS  Google Scholar 

  15. Evans IR, Wood W (2011) Drosophila embryonic hemocytes. Curr Biol CB 21(5):R173–R174. doi:10.1016/j.cub.2011.01.061

    CAS  Google Scholar 

  16. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928. doi:10.1146/annurev.immunol.22.012703.104543

    PubMed  CAS  Google Scholar 

  17. Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12:593–633. doi:10.1146/annurev.iy.12.040194.003113

    PubMed  CAS  Google Scholar 

  18. Lin F, Baldessari F, Gyenge CC, Sato T, Chambers RD, Santiago JG, Butcher EC (2008) Lymphocyte electrotaxis in vitro and in vivo. J Immunol 181(4):2465–2471

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375):109–112. doi:10.1038/nature10632

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Wilson K, Lewalle A, Fritzsche M, Thorogate R, Duke T, Charras G (2013) Mechanisms of leading edge protrusion in interstitial migration. Nat Commun 4:2896. doi:10.1038/ncomms3896

    PubMed Central  PubMed  Google Scholar 

  21. Xu W, Wang P, Petri B, Zhang Y, Tang W, Sun L, Kress H, Mann T, Shi Y, Kubes P, Wu D (2010) Integrin-induced PIP5K1C kinase polarization regulates neutrophil polarization, directionality, and in vivo infiltration. Immunity 33(3):340–350. doi:10.1016/j.immuni.2010.08.015

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. EMBO J 18(3):501–511. doi:10.1093/emboj/18.3.501

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Germena G, Hirsch E (2013) PI3Ks and small GTPases in neutrophil migration: two sides of the same coin. Mol Immunol 55(1):83–86. doi:10.1016/j.molimm.2012.10.004

    PubMed  CAS  Google Scholar 

  24. Heit B, Liu L, Colarusso P, Puri KD, Kubes P (2008) PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J Cell Sci 121(Pt 2):205–214. doi:10.1242/jcs.020412

    PubMed  CAS  Google Scholar 

  25. Tybulewicz VL, Henderson RB (2009) Rho family GTPases and their regulators in lymphocytes. Nat Rev Immunol 9(9):630–644. doi:10.1038/nri2606

    PubMed  CAS  Google Scholar 

  26. Vicente-Manzanares M, Sanchez-Madrid F (2004) Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol 4(2):110–122. doi:10.1038/nri1268

    PubMed  CAS  Google Scholar 

  27. Tooley AJ, Gilden J, Jacobelli J, Beemiller P, Trimble WS, Kinoshita M, Krummel MF (2009) Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol 11(1):17–26. doi:10.1038/ncb1808

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8(2):156–162. doi:10.1038/ncb1355

    PubMed  CAS  Google Scholar 

  29. Niggli V (2003) Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 116(Pt 5):813–822

    PubMed  CAS  Google Scholar 

  30. Renkawitz J, Sixt M (2010) Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep 11(10):744–750. doi:10.1038/embor.2010.147

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Hogg N, Patzak I, Willenbrock F (2011) The insider’s guide to leukocyte integrin signalling and function. Nat Rev Immunol 11(6):416–426. doi:10.1038/nri2986

    PubMed  CAS  Google Scholar 

  32. Abram CL, Lowell CA (2009) The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 27:339–362. doi:10.1146/annurev.immunol.021908.132554

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55. doi:10.1038/nature06887

    PubMed  Google Scholar 

  34. Brown AF (1982) Neutrophil granulocytes: adhesion and locomotion on collagen substrata and in collagen matrices. J Cell Sci 58:455–467

    PubMed  CAS  Google Scholar 

  35. Haston WS, Shields JM, Wilkinson PC (1982) Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J Cell Biol 92(3):747–752

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Friedl P, Entschladen F, Conrad C, Niggemann B, Zanker KS (1998) CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur J Immunol 28(8):2331–2343. doi:10.1002/(SICI)1521-4141(199808)28:08<2331::AID-IMMU2331>3.0.CO;2-C

    PubMed  CAS  Google Scholar 

  37. Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW, Shulman Z, Hartmann T, Sixt M, Cyster JG, Alon R (2007) Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat Immunol 8(10):1076–1085. doi:10.1038/ni1499

    PubMed  CAS  Google Scholar 

  38. Barry NP, Bretscher MS (2010) Dictyostelium amoebae and neutrophils can swim. Proc Natl Acad Sci U S A 107(25):11376–11380. doi:10.1073/pnas.1006327107

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Malawista SE, de Boisfleury Chevance A (1997) Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. Proc Natl Acad Sci U S A 94(21):11577–11582

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Faure-Andre G, Vargas P, Yuseff MI, Heuze M, Diaz J, Lankar D, Steri V, Manry J, Hugues S, Vascotto F, Boulanger J, Raposo G, Bono MR, Rosemblatt M, Piel M, Lennon-Dumenil AM (2008) Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322(5908):1705–1710. doi:10.1126/science.1159894

    PubMed  CAS  Google Scholar 

  41. Fernandez MI, Heuze ML, Martinez-Cingolani C, Volpe E, Donnadieu MH, Piel M, Homey B, Lennon-Dumenil AM, Soumelis V (2011) The human cytokine TSLP triggers a cell-autonomous dendritic cell migration in confined environments. Blood 118(14):3862–3869. doi:10.1182/blood-2010-12-323089

    PubMed  CAS  Google Scholar 

  42. Jacobelli J, Friedman RS, Conti MA, Lennon-Dumenil AM, Piel M, Sorensen CM, Adelstein RS, Krummel MF (2010) Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat Immunol 11(10):953–961. doi:10.1038/ni.1936

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC, Yang JT, Konstantopoulos K (2013) Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J Cell Biol 202(5):807–824. doi:10.1083/jcb.201302132

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Ambravaneswaran V, Wong IY, Aranyosi AJ, Toner M, Irimia D (2010) Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integr Biol Quant Biosci Nano Macro 2(11–12):639–647. doi:10.1039/c0ib00011f

    CAS  Google Scholar 

  45. Heuze ML, Collin O, Terriac E, Lennon-Dumenil AM, Piel M (2011) Cell migration in confinement: a micro-channel-based assay. Methods Mol Biol 769:415–434. doi:10.1007/978-1-61779-207-6_28

    PubMed  CAS  Google Scholar 

  46. Irimia D, Charras G, Agrawal N, Mitchison T, Toner M (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7(12):1783–1790. doi:10.1039/b710524j

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Abhyankar VV, Toepke MW, Cortesio CL, Lokuta MA, Huttenlocher A, Beebe DJ (2008) A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9):1507–1515. doi:10.1039/b803533d

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Sackmann EK, Berthier E, Young EW, Shelef MA, Wernimont SA, Huttenlocher A, Beebe DJ (2012) Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood 120(14):e45–e53. doi:10.1182/blood-2012-03-416453

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Heuze ML, Vargas P, Chabaud M, Le Berre M, Liu YJ, Collin O, Solanes P, Voituriez R, Piel M, Lennon-Dumenil AM (2013) Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol Rev 256(1):240–254. doi:10.1111/imr.12108

    PubMed  CAS  Google Scholar 

  50. Prentice-Mott HV, Chang CH, Mahadevan L, Mitchison TJ, Irimia D, Shah JV (2013) Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proc Natl Acad Sci U S A 110(52):21006–21011. doi:10.1073/pnas.1317441110

    PubMed  CAS  Google Scholar 

  51. Le Berre M, Liu YJ, Hu J, Maiuri P, Benichou O, Voituriez R, Chen Y, Piel M (2013) Geometric friction directs cell migration. Phys Rev Lett 111(19):198101

    PubMed  Google Scholar 

  52. Kwon KW, Park H, Song KH, Choi JC, Ahn H, Park MJ, Suh KY, Doh J (2012) Nanotopography-guided migration of T cells. J Immunol 189(5):2266–2273. doi:10.4049/jimmunol.1102273

    PubMed  CAS  Google Scholar 

  53. Sixt M, Lämmermann T (2011) In vitro analysis of chemotactic leukocyte migration in 3D environments. Methods Mol Biol 769:149–165. doi:10.1007/978-1-61779-207-6_11

    PubMed  CAS  Google Scholar 

  54. Reichardt P, Gunzer F, Gunzer M (2007) Analyzing the physicodynamics of immune cells in a three-dimensional collagen matrix. Methods Mol Biol 380:253–269. doi:10.1007/978-1-59745-395-0_15

    PubMed  CAS  Google Scholar 

  55. Weigelin B, Friedl P (2010) A three-dimensional organotypic assay to measure target cell killing by cytotoxic T lymphocytes. Biochem Pharmacol 80(12):2087–2091. doi:10.1016/j.bcp.2010.09.004

    PubMed  CAS  Google Scholar 

  56. Friedl P, Brocker EB (2004) Reconstructing leukocyte migration in 3D extracellular matrix by time-lapse videomicroscopy and computer-assisted tracking. Methods Mol Biol 239:77–90

    PubMed  Google Scholar 

  57. Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V (2010) Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 184(2):1049–1061. doi:10.4049/jimmunol.0902223

    PubMed  Google Scholar 

  58. Wolf K, Muller R, Borgmann S, Brocker EB, Friedl P (2003) Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102(9):3262–3269. doi:10.1182/blood-2002-12-3791

    PubMed  CAS  Google Scholar 

  59. Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P (2009) Collagen-based cell migration models in vitro and in vivo. Sem Cell Dev Biol 20(8):931–941. doi:10.1016/j.semcdb.2009.08.005

    CAS  Google Scholar 

  60. Raub CB, Suresh V, Krasieva T, Lyubovitsky J, Mih JD, Putnam AJ, Tromberg BJ, George SC (2007) Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys J 92(6):2212–2222. doi:10.1529/biophysj.106.097998

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Raub CB, Unruh J, Suresh V, Krasieva T, Lindmo T, Gratton E, Tromberg BJ, George SC (2008) Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys J 94(6):2361–2373. doi:10.1529/biophysj.107.120006

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Gobeaux F, Mosser G, Anglo A, Panine P, Davidson P, Giraud-Guille MM, Belamie E (2008) Fibrillogenesis in dense collagen solutions: a physicochemical study. J Mol Biol 376(5):1509–1522. doi:10.1016/j.jmb.2007.12.047

    PubMed  CAS  Google Scholar 

  63. Doyle AD, Petrie RJ, Kutys ML, Yamada KM (2013) Dimensions in cell migration. Curr Opin Cell Biol 25(5):642–649. doi:10.1016/j.ceb.2013.06.004

    PubMed  CAS  Google Scholar 

  64. Klemke M, Kramer E, Konstandin MH, Wabnitz GH, Samstag Y (2010) An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments. EMBO J 29(17):2915–2929. doi:10.1038/emboj.2010.153

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Forster R, Alon R, Fraemohs L, Dreck K, Weber C, Lämmermann T, Sixt M, Kolanus W (2009) Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood 113(23):5801–5810. doi:10.1182/blood-2008-08-176123

    PubMed  CAS  Google Scholar 

  66. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084. doi:10.1083/jcb.201210152

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Le Berre M, Aubertin J, Piel M (2012) Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr Biol Quant Biosci Nano Macro 4(11):1406–1414. doi:10.1039/c2ib20056b

    Google Scholar 

  68. Lämmermann T, Renkawitz J, Wu X, Hirsch K, Brakebusch C, Sixt M (2009) Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113(23):5703–5710. doi:10.1182/blood-2008-11-191882

    PubMed  Google Scholar 

  69. Harada Y, Tanaka Y, Terasawa M, Pieczyk M, Habiro K, Katakai T, Hanawa-Suetsugu K, Kukimoto-Niino M, Nishizaki T, Shirouzu M, Duan X, Uruno T, Nishikimi A, Sanematsu F, Yokoyama S, Stein JV, Kinashi T, Fukui Y (2012) DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119(19):4451–4461. doi:10.1182/blood-2012-01-407098

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Cougoule C, Van Goethem E, Le Cabec V, Lafouresse F, Dupre L, Mehraj V, Mege JL, Lastrucci C, Maridonneau-Parini I (2012) Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur J Cell Biol 91(11–12):938–949. doi:10.1016/j.ejcb.2012.07.002

    PubMed  CAS  Google Scholar 

  71. Jacobelli J, Bennett FC, Pandurangi P, Tooley AJ, Krummel MF (2009) Myosin-IIA and ICAM-1 regulate the interchange between two distinct modes of T cell migration. J Immunol 182(4):2041–2050. doi:10.4049/jimmunol.0803267

    PubMed  CAS  Google Scholar 

  72. Renkawitz J, Schumann K, Weber M, Lammermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M (2009) Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11(12):1438–1443. doi:10.1038/ncb1992

    PubMed  CAS  Google Scholar 

  73. Junt T, Scandella E, Ludewig B (2008) Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat Rev Immunol 8(10):764–775. doi:10.1038/nri2414

    PubMed  CAS  Google Scholar 

  74. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5(8):617–628. doi:10.1038/nri1670

    PubMed  CAS  Google Scholar 

  75. Lodygin D, Odoardi F, Schlager C, Korner H, Kitz A, Nosov M, van den Brandt J, Reichardt HM, Haberl M, Flugel A (2013) A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat Med 19(6):784–790. doi:10.1038/nm.3182

    PubMed  CAS  Google Scholar 

  76. Marangoni F, Murooka TT, Manzo T, Kim EY, Carrizosa E, Elpek NM, Mempel TR (2013) The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 38(2):237–249. doi:10.1016/j.immuni.2012.09.012

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Azar GA, Lemaitre F, Robey EA, Bousso P (2010) Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes. Proc Natl Acad Sci U S A 107(8):3675–3680. doi:10.1073/pnas.0905901107

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Garrod KR, Moreau HD, Garcia Z, Lemaitre F, Bouvier I, Albert ML, Bousso P (2012) Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep 2(5):1438–1447. doi:10.1016/j.celrep.2012.10.015

    PubMed  CAS  Google Scholar 

  79. Mues M, Bartholomaus I, Thestrup T, Griesbeck O, Wekerle H, Kawakami N, Krishnamoorthy G (2013) Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat Med 19(6):778–783. doi:10.1038/nm.3180

    PubMed  CAS  Google Scholar 

  80. Tang J, van Panhuys N, Kastenmuller W, Germain RN (2013) The future of immunoimaging—deeper, bigger, more precise, and definitively more colorful. Eur J Immunol 43(6):1407–1412. doi:10.1002/eji.201243119

    PubMed  CAS  Google Scholar 

  81. Huang JH, Cardenas-Navia LI, Caldwell CC, Plumb TJ, Radu CG, Rocha PN, Wilder T, Bromberg JS, Cronstein BN, Sitkovsky M, Dewhirst MW, Dustin ML (2007) Requirements for T lymphocyte migration in explanted lymph nodes. J Immunol 178(12):7747–7755

    PubMed  CAS  Google Scholar 

  82. Hyun YM, Sumagin R, Sarangi PP, Lomakina E, Overstreet MG, Baker CM, Fowell DJ, Waugh RE, Sarelius IH, Kim M (2012) Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J Exp Med 209(7):1349–1362. doi:10.1084/jem.20111426

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14(1):41–51. doi:10.1038/ni.2477

    PubMed  CAS  Google Scholar 

  84. Werr J, Johansson J, Eriksson EE, Hedqvist P, Ruoslahti E, Lindbom L (2000) Integrin alpha(2)beta(1) (VLA-2) is a principal receptor used by neutrophils for locomotion in extravascular tissue. Blood 95(5):1804–1809

    PubMed  CAS  Google Scholar 

  85. Werr J, Xie X, Hedqvist P, Ruoslahti E, Lindbom L (1998) Beta1 integrins are critically involved in neutrophil locomotion in extravascular tissue in vivo. J Exp Med 187(12):2091–2096

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Lerchenberger M, Uhl B, Stark K, Zuchtriegel G, Eckart A, Miller M, Puhr-Westerheide D, Praetner M, Rehberg M, Khandoga AG, Lauber K, Massberg S, Krombach F, Reichel CA (2013) Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue. Blood 122(5):770–780. doi:10.1182/blood-2012-12-472944

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Khandoga AG, Khandoga A, Reichel CA, Bihari P, Rehberg M, Krombach F (2009) In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue. PloS ONE 4(3):e4693. doi:10.1371/journal.pone.0004693

    PubMed Central  PubMed  Google Scholar 

  88. Vemula S, Shi J, Hanneman P, Wei L, Kapur R (2010) ROCK1 functions as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability. Blood 115(9):1785–1796. doi:10.1182/blood-2009-08-237222

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Zhang H, Schaff UY, Green CE, Chen H, Sarantos MR, Hu Y, Wara D, Simon SI, Lowell CA (2006) Impaired integrin-dependent function in Wiskott-Aldrich syndrome protein-deficient murine and human neutrophils. Immunity 25(2):285–295. doi:10.1016/j.immuni.2006.06.014

    PubMed  Google Scholar 

  90. Sun C, Forster C, Nakamura F, Glogauer M (2013) Filamin-A regulates neutrophil uropod retraction through RhoA during chemotaxis. PloS ONE 8(10):e79009. doi:10.1371/journal.pone.0079009

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Shi Y, Zhang J, Mullin M, Dong B, Alberts AS, Siminovitch KA (2009) The mDial formin is required for neutrophil polarization, migration, and activation of the LARG/RhoA/ROCK signaling axis during chemotaxis. J Immunol 182(6):3837–3845. doi:10.4049/jimmunol.0803838

    PubMed  CAS  Google Scholar 

  92. Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179(2):239–245. doi:10.1083/jcb.200705122

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, Filippi MD (2012) Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 120(17):3563–3574. doi:10.1182/blood-2012-04-426981

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Schnoor M, Lai FP, Zarbock A, Klaver R, Polaschegg C, Schulte D, Weich HA, Oelkers JM, Rottner K, Vestweber D (2011) Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. J Exp Med 208(8):1721–1735. doi:10.1084/jem.20101920

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Park H, Staehling-Hampton K, Appleby MW, Brunkow ME, Habib T, Zhang Y, Ramsdell F, Liggitt HD, Freie B, Tsang M, Carlson G, Friend S, Frevert C, Iritani BM (2008) A point mutation in the murine Hem1 gene reveals an essential role for hematopoietic protein 1 in lymphopoiesis and innate immunity. J Exp Med 205(12):2899–2913. doi:10.1084/jem.20080340

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, Tanaka Y, Shibasaki M, Kanaho Y, Sasaki T, Frohman MA, Fukui Y (2009) Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324(5925):384–387. doi:10.1126/science.1170179

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Graham DB, Zinselmeyer BH, Mascarenhas F, Delgado R, Miller MJ, Swat W (2009) ITAM signaling by Vav family Rho guanine nucleotide exchange factors regulates interstitial transit rates of neutrophils in vivo. PloS ONE 4(2):e4652. doi:10.1371/journal.pone.0004652

    PubMed Central  PubMed  Google Scholar 

  98. Gray EE, Suzuki K, Cyster JG (2011) Cutting edge: identification of a motile IL-17-producing gammadelta T cell population in the dermis. J Immunol 186(11):6091–6095. doi:10.4049/jimmunol.1100427

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN (2011) Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477(7363):216–219. doi:10.1038/nature10339

    PubMed  CAS  Google Scholar 

  100. Celli S, Albert ML, Bousso P (2011) Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat Med 17(6):744–749. doi:10.1038/nm.2376

    PubMed  CAS  Google Scholar 

  101. Mrass P, Petravic J, Davenport MP, Weninger W (2010) Cell-autonomous and environmental contributions to the interstitial migration of T cells. Semin Immunopathol 32(3):257–274. doi:10.1007/s00281-010-0212-1

    PubMed Central  PubMed  Google Scholar 

  102. Matheu MP, Beeton C, Garcia A, Chi V, Rangaraju S, Safrina O, Monaghan K, Uemura MI, Li D, Pal S, de la Maza LM, Monuki E, Flugel A, Pennington MW, Parker I, Chandy KG, Cahalan MD (2008) Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29(4):602–614. doi:10.1016/j.immuni.2008.07.015

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Chow Z, Mueller SN, Deane JA, Hickey MJ (2013) Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation. J Immunol 191(6):3049–3056. doi:10.4049/jimmunol.1203205

    PubMed  CAS  Google Scholar 

  104. Filipe-Santos O, Pescher P, Breart B, Lippuner C, Aebischer T, Glaichenhaus N, Spath GF, Bousso P (2009) A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6(1):23–33. doi:10.1016/j.chom.2009.04.014

    PubMed  CAS  Google Scholar 

  105. Egawa G, Honda T, Tanizaki H, Doi H, Miyachi Y, Kabashima K (2011) In vivo imaging of T-cell motility in the elicitation phase of contact hypersensitivity using two-photon microscopy. J Invest Dermatol 131(4):977–979. doi:10.1038/jid.2010.386

    PubMed  CAS  Google Scholar 

  106. Honda T, Egen JG, Lämmermann T, Kastenmüller W, Torabi-Parizi P, Germain RN (2014) Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity. doi:10.1016/j.immuni.2013.11.017

    PubMed  Google Scholar 

  107. Overstreet MG, Gaylo A, Angermann BR, Hughson A, Hyun YM, Lambert K, Acharya M, Billroth-Maclurg AC, Rosenberg AF, Topham DJ, Yagita H, Kim M, Lacy-Hulbert A, Meier-Schellersheim M, Fowell DJ (2013) Inflammation-induced interstitial migration of effector CD4(+) T cells is dependent on integrin alphaV. Nat Immunol 14(9):949–958. doi:10.1038/ni.2682

    PubMed  CAS  Google Scholar 

  108. Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356. doi:10.1084/jem.20061890

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, Cavanagh LL, von Andrian UH, Ertl HC, Haydon PG, Weninger W (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203(12):2749–2761. doi:10.1084/jem.20060710

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF, Pepper M, Wherry EJ, Dzierzinski F, Roos D, Haydon PG, Laufer TM, Weninger W, Hunter CA (2009) Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30(2):300–311. doi:10.1016/j.immuni.2008.12.013

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Pflicke H, Sixt M (2009) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 206(13):2925–2935. doi:10.1084/jem.20091739

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339(6117):328–332. doi:10.1126/science.1228456

    PubMed  CAS  Google Scholar 

  113. Kilarski WW, Guc E, Teo JC, Oliver SR, Lund AW, Swartz MA (2013) Intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PloS ONE 8(2):e57135. doi:10.1371/journal.pone.0057135

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A (2006) Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J Invest Dermatol 126(4):787–796. doi:10.1038/sj.jid.5700107

    PubMed  CAS  Google Scholar 

  115. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22(5):643–654. doi:10.1016/j.immuni.2005.04.004

    PubMed  CAS  Google Scholar 

  116. Gaiser MR, Lämmermann T, Feng X, Igyarto BZ, Kaplan DH, Tessarollo L, Germain RN, Udey MC (2012) Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci U S A 109(15):E889–E897. doi:10.1073/pnas.1117674109

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C, Mrass P, Iparraguirre A, Cavanagh LL, Triccas JA, Beverley SM, Scott P, Weninger W (2008) Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PloS Pathog 4(11):e1000222. doi:10.1371/journal.ppat.1000222

    PubMed Central  PubMed  Google Scholar 

  118. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angeli V, Shakhar G (2011) DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 208(10):2141–2153. doi:10.1084/jem.20102392

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Nitschke M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B, Luche H, Fehling HJ, Biehlmaier O, Lyck R, Halin C (2012) Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood 120(11):2249–2258. doi:10.1182/blood-2012-03-417923

    PubMed  CAS  Google Scholar 

  120. Benvenuti F, Hugues S, Walmsley M, Ruf S, Fetler L, Popoff M, Tybulewicz VL, Amigorena S (2004) Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305(5687):1150–1153. doi:10.1126/science.1099159

    PubMed  CAS  Google Scholar 

  121. Tanizaki H, Egawa G, Inaba K, Honda T, Nakajima S, Moniaga CS, Otsuka A, Ishizaki T, Tomura M, Watanabe T, Miyachi Y, Narumiya S, Okada T, Kabashima K (2010) Rho-mDia1 pathway is required for adhesion, migration, and T-cell stimulation in dendritic cells. Blood 116(26):5875–5884. doi:10.1182/blood-2010-01-264150

    PubMed  CAS  Google Scholar 

  122. Snapper SB, Meelu P, Nguyen D, Stockton BM, Bozza P, Alt FW, Rosen FS, von Andrian UH, Klein C (2005) WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J Leukoc Biol 77(6):993–998. doi:10.1189/jlb.0804444

    PubMed  CAS  Google Scholar 

  123. Bouma G, Burns S, Thrasher AJ (2007) Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood 110(13):4278–4284. doi:10.1182/blood-2007-06-096875

    PubMed  CAS  Google Scholar 

  124. de Noronha S, Hardy S, Sinclair J, Blundell MP, Strid J, Schulz O, Zwirner J, Jones GE, Katz DR, Kinnon C, Thrasher AJ (2005) Impaired dendritic-cell homing in vivo in the absence of Wiskott-Aldrich syndrome protein. Blood 105(4):1590–1597. doi:10.1182/blood-2004-06-2332

    PubMed  Google Scholar 

  125. Frittoli E, Matteoli G, Palamidessi A, Mazzini E, Maddaluno L, Disanza A, Yang C, Svitkina T, Rescigno M, Scita G (2011) The signaling adaptor Eps8 is an essential actin capping protein for dendritic cell migration. Immunity 35(3):388–399. doi:10.1016/j.immuni.2011.07.007

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Yamakita Y, Matsumura F, Lipscomb MW, Chou PC, Werlen G, Burkhardt JK, Yamashiro S (2011) Fascin1 promotes cell migration of mature dendritic cells. J Immunol 186(5):2850–2859. doi:10.4049/jimmunol.1001667

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Wang Z, Kumamoto Y, Wang P, Gan X, Lehmann D, Smrcka AV, Cohn L, Iwasaki A, Li L, Wu D (2009) Regulation of immature dendritic cell migration by RhoA guanine nucleotide exchange factor Arhgef5. J Biol Chem 284(42):28599–28606. doi:10.1074/jbc.M109.047282

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Ocana-Morgner C, Reichardt P, Chopin M, Braungart S, Wahren C, Gunzer M, Jessberger R (2011) Sphingosine 1-phosphate-induced motility and endocytosis of dendritic cells is regulated by SWAP-70 through RhoA. J Immunol 186(9):5345–5355. doi:10.4049/jimmunol.1003461

    PubMed  CAS  Google Scholar 

  129. Takamatsu H, Takegahara N, Nakagawa Y, Tomura M, Taniguchi M, Friedel RH, Rayburn H, Tessier-Lavigne M, Yoshida Y, Okuno T, Mizui M, Kang S, Nojima S, Tsujimura T, Nakatsuji Y, Katayama I, Toyofuku T, Kikutani H, Kumanogoh A (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol 11(7):594–600. doi:10.1038/ni.1885

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, Jakus Z, Kuligowski M, Fletcher AL, Elpek KG, Bellemare-Pelletier A, Sceats L, Reynoso ED, Gonzalez SF, Graham DB, Chang J, Peters A, Woodruff M, Kim YA, Swat W, Morita T, Kuchroo V, Carroll MC, Kahn ML, Wucherpfennig KW, Turley SJ (2012) Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37(2):276–289. doi:10.1016/j.immuni.2012.05.022

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Luckashenak N, Wahe A, Breit K, Brakebusch C, Brocker T (2013) Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo. J Immunol 190(1):27–35. doi:10.4049/jimmunol.1201082

    PubMed  CAS  Google Scholar 

  132. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, Matthews HF, Davis J, Turner ML, Uzel G, Holland SM, Su HC (2009) Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med 361(21):2046–2055. doi:10.1056/NEJMoa0905506

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, Chen A, Kim HS, Lloret MG, Schulze I, Ehl S, Thiel J, Pfeifer D, Veelken H, Niehues T, Siepermann K, Weinspach S, Reisli I, Keles S, Genel F, Kutukculer N, Camcioglu Y, Somer A, Karakoc-Aydiner E, Barlan I, Gennery A, Metin A, Degerliyurt A, Pietrogrande MC, Yeganeh M, Baz Z, Al-Tamemi S, Klein C, Puck JM, Holland SM, McCabe ER, Grimbacher B, Chatila TA (2009) Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 124(6):1302, e1284

    Google Scholar 

  134. Su HC, Jing H, Zhang Q (2011) DOCK8 deficiency. Ann N Y Acad Sci 1246:26–33. doi:10.1111/j.1749-6632.2011.06295.x

    PubMed  CAS  Google Scholar 

  135. Randall KL, Lambe T, Johnson AL, Treanor B, Kucharska E, Domaschenz H, Whittle B, Tze LE, Enders A, Crockford TL, Bouriez-Jones T, Alston D, Cyster JG, Lenardo MJ, Mackay F, Deenick EK, Tangye SG, Chan TD, Camidge T, Brink R, Vinuesa CG, Batista FD, Cornall RJ, Goodnow CC (2009) Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol 10(12):1283–1291. doi:10.1038/ni.1820

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Randall KL, Chan SS, Ma CS, Fung I, Mei Y, Yabas M, Tan A, Arkwright PD, Al Suwairi W, Lugo Reyes SO, Yamazaki-Nakashimada MA, Garcia-Cruz Mde L, Smart JM, Picard C, Okada S, Jouanguy E, Casanova JL, Lambe T, Cornall RJ, Russell S, Oliaro J, Tangye SG, Bertram EM, Goodnow CC (2011) DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med 208(11):2305–2320. doi:10.1084/jem.20110345

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Lambe T, Crawford G, Johnson AL, Crockford TL, Bouriez-Jones T, Smyth AM, Pham TH, Zhang Q, Freeman AF, Cyster JG, Su HC, Cornall RJ (2011) DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory. Eur J Immunol 41(12):3423–3435. doi:10.1002/eji.201141759

    PubMed Central  PubMed  CAS  Google Scholar 

  138. Crawford G, Enders A, Gileadi U, Stankovic S, Zhang Q, Lambe T, Crockford TL, Lockstone HE, Freeman A, Arkwright PD, Smart JM, Ma CS, Tangye SG, Goodnow CC, Cerundolo V, Godfrey DI, Su HC, Randall KL, Cornall RJ (2013) DOCK8 is critical for the survival and function of NKT cells. Blood 122(12):2052–2061. doi:10.1182/blood-2013-02-482331

    PubMed  CAS  Google Scholar 

  139. McGhee SA, Chatila TA (2010) DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction. Dis Markers 29(3–4):151–156. doi:10.3233/DMA-2010-0740

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Massaad MJ, Ramesh N, Geha RS (2013) Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 1285:26–43. doi:10.1111/nyas.12049

    PubMed  CAS  Google Scholar 

  141. Badolato R (2013) Defects of leukocyte migration in primary immunodeficiencies. Eur J Immunol 43(6):1436–1440. doi:10.1002/eji.201243155

    PubMed  CAS  Google Scholar 

  142. Ariotti S, Beltman JB, Chodaczek G, Hoekstra ME, van Beek AE, Gomez-Eerland R, Ritsma L, van Rheenen J, Maree AF, Zal T, de Boer RJ, Haanen JB, Schumacher TN (2012) Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc Natl Acad Sci U S A 109(48):19739–19744. doi:10.1073/pnas.1208927109

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Chodaczek G, Papanna V, Zal MA, Zal T (2012) Body-barrier surveillance by epidermal gammadelta TCRs. Nat Immunol 13(3):272–282. doi:10.1038/ni.2240

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Edelblum KL, Shen L, Weber CR, Marchiando AM, Clay BS, Wang Y, Prinz I, Malissen B, Sperling AI, Turner JR (2012) Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc Natl Acad Sci U S A 109(18):7097–7102. doi:10.1073/pnas.1112519109

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Kawakami N, Flugel A (2010) Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol 32(3):275–287. doi:10.1007/s00281-010-0216-x

    PubMed Central  PubMed  Google Scholar 

  146. Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Invest 120(5):1368–1379. doi:10.1172/JCI41911

    PubMed Central  PubMed  CAS  Google Scholar 

  147. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB (2013) Transcranial amelioration of inflammation and cell death after brain injury. Nature. doi:10.1038/nature12808

    Google Scholar 

  148. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472

    PubMed  CAS  Google Scholar 

  149. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, Klinkert WE, Flugel-Koch C, Issekutz TB, Wekerle H, Flugel A (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269):94–98. doi:10.1038/nature08478

    PubMed  Google Scholar 

  150. Yin X, Chtanova T, Ladi E, Robey EA (2006) Thymocyte motility: mutants, movies and migration patterns. Curr Opin Immunol 18(2):191–197. doi:10.1016/j.coi.2006.02.004

    PubMed  CAS  Google Scholar 

  151. Arnon TI, Horton RM, Grigorova IL, Cyster JG (2013) Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493(7434):684–688. doi:10.1038/nature11738

    PubMed Central  PubMed  CAS  Google Scholar 

  152. Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11(11):989–996. doi:10.1038/ni.1946

    PubMed  CAS  Google Scholar 

  153. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143(4):592–605. doi:10.1016/j.cell.2010.10.032

    PubMed Central  PubMed  CAS  Google Scholar 

  154. Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristan C, Victora GD, Zanin-Zhorov A, Dustin ML (2010) Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28:79–105. doi:10.1146/annurev-immunol-030409-101308

    PubMed Central  PubMed  CAS  Google Scholar 

  155. Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN (2011) Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34(5):807–819. doi:10.1016/j.immuni.2011.03.022

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28(2):271–284. doi:10.1016/j.immuni.2007.12.010

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Torabi-Parizi P, Vrisekoop N, Kastenmuller W, Gerner MY, Egen JG, Germain RN (2014) Pathogen-related differences in the abundance of presented antigen are reflected in CD4+ T cell dynamic behavior and effector function in the lung. J Immunol. doi:10.4049/jimmunol.1301743

    PubMed  Google Scholar 

  158. Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9(9):618–629. doi:10.1038/nri2588

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Lammermann T, Sixt M (2008) The microanatomy of T-cell responses. Immunol Rev 221:26–43. doi:10.1111/j.1600-065X.2008.00592.x

    PubMed  Google Scholar 

  160. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5(12):1243–1250. doi:10.1038/ni1139

    PubMed  CAS  Google Scholar 

  161. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25(6):989–1001. doi:10.1016/j.immuni.2006.10.011

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Katakai T, Habiro K, Kinashi T (2013) Dendritic cells regulate high-speed interstitial T cell migration in the lymph node via LFA-1/ICAM-1. J Immunol 191(3):1188–1199. doi:10.4049/jimmunol.1300739

    PubMed  CAS  Google Scholar 

  163. Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22(1):19–29. doi:10.1016/j.immuni.2004.11.013

    PubMed  CAS  Google Scholar 

  164. Asperti-Boursin F, Real E, Bismuth G, Trautmann A, Donnadieu E (2007) CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner. J Exp Med 204(5):1167–1179. doi:10.1084/jem.20062079

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R (2007) CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 204(3):489–495. doi:10.1084/jem.20061706

    PubMed Central  PubMed  CAS  Google Scholar 

  166. Okada T, Cyster JG (2007) CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J Immunol 178(5):2973–2978

    PubMed  CAS  Google Scholar 

  167. Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci U S A 97(23):12694–12699. doi:10.1073/pnas.97.23.12694

    PubMed Central  PubMed  CAS  Google Scholar 

  168. Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Forster R, Lutz MB, Sorokin L, Sixt M (2010) Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32(5):703–713. doi:10.1016/j.immuni.2010.04.017

    PubMed  CAS  Google Scholar 

  169. Boscacci RT, Pfeiffer F, Gollmer K, Sevilla AI, Martin AM, Soriano SF, Natale D, Henrickson S, von Andrian UH, Fukui Y, Mellado M, Deutsch U, Engelhardt B, Stein JV (2010) Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing. Blood 116(6):915–925. doi:10.1182/blood-2009-11-254334

    PubMed Central  PubMed  CAS  Google Scholar 

  170. Park EJ, Peixoto A, Imai Y, Goodarzi A, Cheng G, Carman CV, von Andrian UH, Shimaoka M (2010) Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Blood 115(8):1572–1581. doi:10.1182/blood-2009-08-237917

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Reichardt P, Patzak I, Jones K, Etemire E, Gunzer M, Hogg N (2013) A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes. EMBO J 32(6):829–843. doi:10.1038/emboj.2013.33

    PubMed Central  PubMed  CAS  Google Scholar 

  172. Soriano SF, Hons M, Schumann K, Kumar V, Dennier TJ, Lyck R, Sixt M, Stein JV (2011) In vivo analysis of uropod function during physiological T cell trafficking. J Immunol 187(5):2356–2364. doi:10.4049/jimmunol.1100935

    PubMed  CAS  Google Scholar 

  173. Liu Y, Belkina NV, Park C, Nambiar R, Loughhead SM, Patino-Lopez G, Ben-Aissa K, Hao JJ, Kruhlak MJ, Qi H, von Andrian UH, Kehrl JH, Tyska MJ, Shaw S (2012) Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood 119(2):445–453. doi:10.1182/blood-2011-07-368860

    PubMed Central  PubMed  CAS  Google Scholar 

  174. Faroudi M, Hons M, Zachacz A, Dumont C, Lyck R, Stein JV, Tybulewicz VL (2010) Critical roles for Rac GTPases in T-cell migration to and within lymph nodes. Blood 116(25):5536–5547. doi:10.1182/blood-2010-08-299438

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Nombela-Arrieta C, Mempel TR, Soriano SF, Mazo I, Wymann MP, Hirsch E, Martinez AC, Fukui Y, von Andrian UH, Stein JV (2007) A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J Exp Med 204(3):497–510. doi:10.1084/jem.20061780

    PubMed Central  PubMed  CAS  Google Scholar 

  176. Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, An J, Xu Y, Jenne CN, Foger N, Sorensen RU, Goodnow CC, Bear JE, Puck JM, Cyster JG (2008) The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9(11):1307–1315. doi:10.1038/ni.1662

    PubMed Central  PubMed  CAS  Google Scholar 

  177. Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, Munk A, Forster R (2011) Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol 12(9):879–887. doi:10.1038/ni.2085

    PubMed  CAS  Google Scholar 

  178. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB, O’Garra A, Cahalan MD, Cyster JG (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol 3(6):e150. doi:10.1371/journal.pbio.0030150

    PubMed Central  PubMed  Google Scholar 

  179. Andreasen SO, Thomsen AR, Koteliansky VE, Novobrantseva TI, Sprague AG, de Fougerolles AR, Christensen JP (2003) Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells. J Immunol 171(6):2804–2811

    PubMed  CAS  Google Scholar 

  180. Cohen SJ, Gurevich I, Feigelson SW, Petrovich E, Moser M, Shakhar G, Fassler R, Alon R (2013) The integrin coactivator Kindlin-3 is not required for lymphocyte diapedesis. Blood 122(15):2609–2617. doi:10.1182/blood-2013-04-495036

    PubMed  CAS  Google Scholar 

  181. Grabbe S, Varga G, Beissert S, Steinert M, Pendl G, Seeliger S, Bloch W, Peters T, Schwarz T, Sunderkotter C, Scharffetter-Kochanek K (2002) Beta2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J Clin Invest 109(2):183–192. doi:10.1172/JCI11703

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Angelika Rambold for carefully preparing figure illustrations and critically reviewing the manuscript. This work was supported by the Intramural Research Program of NIAID, NIH. T.L. was supported by a long-term fellowship of the Human Frontier Science Program Organization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tim Lämmermann or Ronald N. Germain.

Additional information

This article is a contribution to the special issue on New paradigms in leukocyte trafficking, lessons for therapeutics - Guest Editors: F. W. Luscinskas and B. A. Imhof

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lämmermann, T., Germain, R.N. The multiple faces of leukocyte interstitial migration. Semin Immunopathol 36, 227–251 (2014). https://doi.org/10.1007/s00281-014-0418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0418-8

Keywords

Navigation