Skip to main content

Advertisement

Log in

Tissue engineering on matrix: future of autologous tissue replacement

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Tissue engineering aims at the creation of living neo-tissues identical or close to their native human counterparts. As basis of this approach, temporary biodegradable supporter matrices are fabricated in the shape of a desired construct, which promote tissue strength and provide functionality until sufficient neo-tissue is formed. Besides fully synthetic polymer-based scaffolds, decellularized biological tissue of xenogenic or homogenic origin can be used. In a second step, these scaffolds are seeded with autologous cells attaching to the scaffold microstructure. In order to promote neo-tissue formation and maturation, the seeded scaffolds are exposed to different forms of stimulation. In cardiovascular tissue engineering, this “conditioning” can be achieved via culture media and biomimetic in vitro exposure, e.g., using flow bioreactors. This aims at adequate cellular differentiation, proliferation, and extracellular matrix production to form a living tissue called the construct. These living autologous constructs, such as heart valves or vascular grafts, are created in vitro, comprising a viable interstitium with repair and remodeling capabilities already prior to implantation. In situ further in vivo remodeling is intended to recapitulate physiological vascular architecture and function. The remodeling mechanisms were shown to be dominated by monocytic infiltration and chemotactic host-cell attraction leading into a multifaceted inflammatory process and neo-tissue formation. Key molecules of these processes can be integrated into the scaffold matrix to direct cell and tissue fate in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118:1864–1880

    Article  PubMed  Google Scholar 

  2. Yoganathan AP, He Z et al (2004) Fluid mechanics of heart valves. Annu Rev Biomed Eng 6:331–362

    Article  PubMed  CAS  Google Scholar 

  3. Dasi LP, Simon HA, Sucosky P et al (2009) Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 36:225–237

    Article  PubMed  CAS  Google Scholar 

  4. Yacoub MH, Takkenberg JJ (2005) Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med 2:60–61

    Article  PubMed  CAS  Google Scholar 

  5. Zilla P, Brink J, Human P et al (2008) Prosthetic heart valves: catering for the few. Biomaterials 29:385–406

    Article  PubMed  CAS  Google Scholar 

  6. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  7. Sutherland FW, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, Garcia GA, McLellan DL, Engelmayr GC Jr, Sacks MS, Schoen FJ, Mayer JE Jr (2005) From stem cells to viable autologous semilunar heart valve. Circulation 31(111):2783–2791

    Article  Google Scholar 

  8. Schmidt D, Achermann J, Odermatt B et al (2007) Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation 116:I64–I70

    Article  PubMed  Google Scholar 

  9. Schmidt D, Mol A, Breymann C et al (2006) Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation 4(114):I125–I131

    Google Scholar 

  10. Matheny RG, Hutchison ML, Dryden PE et al (2000) Porcine small intestine submucosa as a pulmonary valve leaflet substitute. J Heart Valve Dis 9:769–775

    PubMed  CAS  Google Scholar 

  11. Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X, Shinoka T, Breuer CK (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248:370–377

    PubMed  Google Scholar 

  12. Schmidt D, Stock UA, Hoerstrup SP (2007) Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philos Trans R Soc Lond B Biol Sci 29(362):1505–1512

    Google Scholar 

  13. Brody S, Pandit A (2007) Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater 83:16–43

    PubMed  Google Scholar 

  14. Sacks MS, Schoen FJ, Mayer JE (2009) Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 11:289–313

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt D, Hoerstrup SP (2007) Tissue engineered heart valves based on human cells. Swiss Med Wkly 155:80–85

    Google Scholar 

  16. Shin’oka T, Ma PX, Shum-Tim D et al (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 1(94):II164–II168

    Google Scholar 

  17. Shin'oka T, Shum-Tim D, Ma PX (1997) Tissue-engineered heart valve leaflets: does cell origin affect outcome? Circulation 96:II-102–II-107

  18. Hoerstrup SP, Zund G, Schoeberlein A et al (1998) Fluorescence activated cell sorting: a reliable method in tissue engineering of a bioprosthetic heart valve. Ann Thorac Surg 66:1653–1657

    Article  PubMed  CAS  Google Scholar 

  19. Hoerstrup SP, Sodian R, Daebritz S et al (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–III49

    PubMed  CAS  Google Scholar 

  20. Shin'oka T, Breuer CK, Tanel RE (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60:513–516

    Article  Google Scholar 

  21. Sodian R, Hoerstrup SP, Sperling JS et al (2000) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:22–29

    Google Scholar 

  22. Zund G, Hoerstrup SP, Schoeberlein A et al (1998) Tissue engineering: a new approach in cardiovascular surgery: seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg 13:160–164

    Article  PubMed  CAS  Google Scholar 

  23. Schnell AM, Hoerstrup SP, Zund G et al (2001) Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg 49:221–225

    Article  PubMed  CAS  Google Scholar 

  24. Kadner A, Hoerstrup SP, Zund G et al (2002) A new source for cardiovascular tissue engineering: human bone marrow stromal cells. Eur J Cardiothorac Surg 21:1055–1060

    Article  PubMed  Google Scholar 

  25. Perry TE, Kaushal S, Sutherland FW et al (2003) Thoracic surgery directors association award. Bone marrow as a cell source for tissue engineering heart valves. Ann Thorac Surg 75:761–767

    Article  PubMed  Google Scholar 

  26. Hoerstrup SP, Kadner A, Melnitchouk S et al (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106:I143–I150

    PubMed  Google Scholar 

  27. Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, Rissanen M, Deichmann T, Odermatt B, Weber B, Emmert MY, Zund G, Baaijens FPT, Hoerstrup SP (2010) Minimally invasive implantation of living tissue engineered heart valves—a comprehensive approach from autologous vascular cells to stem cells. J Am Col Cardiol 3(56):510–520

    Article  Google Scholar 

  28. Tanaka KA, Key NS, Levy JH (2009) Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 108:1433–1446

    Article  PubMed  CAS  Google Scholar 

  29. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  30. Kim S, von Recum HA (2008) Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng B Rev 14:133–147

    Article  CAS  Google Scholar 

  31. Kim S, von Recum HA (2009) Endothelial progenitor populations in differentiating embryonic stem cells I: identification and differentiation kinetics. Tissue Eng A 15:3709–3718

    Article  CAS  Google Scholar 

  32. Hoerstrup SP, Kadner A, Breymann CI et al (2002) Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann Thorac Surg 74:46–52

    Article  PubMed  Google Scholar 

  33. Kadner A, Hoerstrup SP, Tracy J et al (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 74:S1422–S1428

    Article  PubMed  Google Scholar 

  34. Kadner A, Zund G, Maurus C et al (2004) Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg 25:635–641

    Article  PubMed  Google Scholar 

  35. Sipehia R, Martucci G, Lipscombe J (1996) Transplantation of human endothelial cell monolayer on artificial vascular prosthesis: the effect of growth-support surface chemistry, cell seeding density, ECM protein coating, and growth factors. Artif Cells Blood Substit Immobil Biotechnol 24:51–63

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt D, Breymann C, Weber A et al (2004) Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg 78:2094–2098

    Article  PubMed  Google Scholar 

  37. Schmidt D, Mol A, Neuenschwander S et al (2005) Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg 27:795–800

    Article  PubMed  Google Scholar 

  38. Schmidt D, Asmis LM, Odermatt B (2006) Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg 82:1465–1471

    Article  PubMed  Google Scholar 

  39. Schmidt D, Mol A, Odermatt B et al (2006) Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng 12:3223–3232

    Article  PubMed  CAS  Google Scholar 

  40. Breymann C, Schmidt D, Hoerstrup SP (2006) Umbilical cord cells as a source of cardiovascular tissue engineering. Stem Cell Rev 2:87–92

    Article  PubMed  Google Scholar 

  41. Parolini O, Soncini M, Evangelista M, Schmidt D (2009) Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med 4:275–291

    Article  PubMed  CAS  Google Scholar 

  42. Pansky A, Roitzheim B, Tobiasch E (2007) Differentiation potential of adult human mesenchymal stem cells. Clin Lab 53:81–84

    PubMed  CAS  Google Scholar 

  43. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    Article  PubMed  CAS  Google Scholar 

  44. Cao Y, Sun Z, Liao L et al (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332:370–379

    Article  PubMed  CAS  Google Scholar 

  45. DiMuzio P, Tulenko T (2007) Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J Vasc Surg 45:A99–A103

    Article  PubMed  Google Scholar 

  46. Breuer CK, Mettler BA, Anthony T et al (2004) Application of tissue-engineering principles to-ward the development of a semilunar heart valve substitute. Tissue Eng 10:1725–1736

    Article  PubMed  CAS  Google Scholar 

  47. Lichtenberg A, Cebotari S, Tudorache I et al (2007) Biological scaffolds for heart valve tissue engineering. Methods Mol Med 140:309–317

    Article  PubMed  CAS  Google Scholar 

  48. Sales VL, Engelmayr GC Jr, Johnson JA Jr et al (2007) Protein precoating of elastomeric tissue-engineering scaffolds increased cellularity, enhanced extracellular matrix protein production, and differentially regulated the phenotypes of circulating endothelial progenitor cells. Circulation 116:I55–I63

    Article  PubMed  CAS  Google Scholar 

  49. Affonso da Costa FD, Dohmen PM, Lopes SV et al (2004) Comparison of cryopreserved homografts and decellularized porcine heterografts implanted in sheep. Artif Organs 28:366–370

    Article  PubMed  Google Scholar 

  50. Allen BS, El-Zein C, Cuneo B et al (2002) Pericardial tissue valves and Gore-Tex conduits as an alternative for right ventricular outflow tract replacement in children. Ann Thorac Surg 74:771–777

    Article  PubMed  Google Scholar 

  51. Bielefeld MR, Bishop DA, Campbell DN et al (2001) Reoperative homograft right ventricular outflow tract reconstruction. Ann Thorac Surg 71:482–487

    Article  PubMed  CAS  Google Scholar 

  52. Carr-White GS, Glennan S, Edwards S et al (1999) Pulmonary autograft versus aortic homograft for rereplacement of the aortic valve: results from a subset of a prospective randomized trial. Circulation 100:II103–II106

    PubMed  CAS  Google Scholar 

  53. Grauss RW, Hazekamp MG, van Vliet S et al (2003) Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 126:2003–2010

    Article  PubMed  CAS  Google Scholar 

  54. Stamm C, Khosravi A, Grabow N et al (2004) Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg 78:2084–2092

    Article  PubMed  Google Scholar 

  55. Hong H, Dong GN, Shi WJ et al (2008) Fabrication of biomatrix/polymer hybrid scaffold for heart valve tissue engineering in vitro. ASAIO J 54:627–632

    Article  PubMed  CAS  Google Scholar 

  56. Hong H, Dong N, Shi J et al (2009) Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study. Artif Organs 33:554–558

    Article  PubMed  Google Scholar 

  57. Neidert MR, Tranquillo RT (2006) Tissue-engineered valves with commissural alignment. Tissue Eng 12:891–903

    Article  PubMed  Google Scholar 

  58. Williams C, Johnson SL, Robinson PS et al (2006) Cell sourcing and culture conditions for fibrin-based valve constructs. Tissue Eng 12:1489–1502

    Article  PubMed  CAS  Google Scholar 

  59. Robinson PS, Johnson SL, Evans MC et al (2008) Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng A 14:83–95

    Article  CAS  Google Scholar 

  60. Syedain ZH, Weinberg JS, Tranquillo RT (2008) Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc Natl Acad Sci 6(105):6537–6542

    Article  Google Scholar 

  61. Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150

    Article  PubMed  CAS  Google Scholar 

  62. Hutmacher DW, Schantz T, Zein I et al (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216

    Article  PubMed  CAS  Google Scholar 

  63. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104

    Article  PubMed  CAS  Google Scholar 

  64. Sodian R, Hoerstrup SP, Sperling JS et al (2000) Evaluation of biodegradable, three-dimensional matrices for tissue engineering of heart valves. ASAIO J 46:107–110

    Article  PubMed  CAS  Google Scholar 

  65. Schaefermeier PK, Szymanski D, Weiss F et al (2009) Design and fabrication of three-dimensional scaffolds for tissue engineering of human heart valves. Eur Surg Res 42:49–53

    Article  PubMed  CAS  Google Scholar 

  66. Rabkin E, Hoerstrup SP, Aikawa M et al (2002) Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro maturation and in-vivo remodeling. J Heart Valve Dis 11:308–314

    PubMed  Google Scholar 

  67. Mol A, Rutten MC, Driessen NJ et al (2006) Autologous human tissue-engineered heart valves: prospects for systemic application. Circulation 114:I152–I158

    Article  PubMed  Google Scholar 

  68. Kasimir MT, Rieder E, Seebacher G et al (2003) Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 26:421–427

    PubMed  CAS  Google Scholar 

  69. Steinhoff G, Stock U, Karim N et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 7(102):50–55

    Google Scholar 

  70. Leyh RG, Wilhelmi M, Rebe P et al (2003) In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg 75:1457–1463

    Article  PubMed  Google Scholar 

  71. Metzner A, Stock UA, Iino K, Fischer G, Huemme T, Boldt J, Braesen JH, Bein B, Renner J, Cremer J, Lutter G (2010) Percutaneous pulmonary valve replacement: autologous tissue-engineered valved stents. Cardiovasc Res 88:453–461

    Article  PubMed  CAS  Google Scholar 

  72. Curtil A, Pegg DE, Wilson A (1997) Repopulation of freeze-dried porcine valves with human fibroblasts and endothelial cells. J Heart Valve Dis 6:296–306

    PubMed  CAS  Google Scholar 

  73. Wilson GJ, Courtman DW, Klement P et al (1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60:353–358

    Article  Google Scholar 

  74. Bertiplaglia B, Ortolani F, Petrelli L et al (2003) Cell characterization of porcine aortic valve and decellularized leaflets repopulated with aortic valve interstitial cells: the VESALIO project. Ann Thorac Surg 75:1274–1282

    Article  Google Scholar 

  75. Zeltinger J, Landeen LK, Alexander HG et al (2001) Development and characterization of tissue-engineered aortic valves. Tissue Eng 7:9–22

    Article  PubMed  CAS  Google Scholar 

  76. Rieder E, Kasimir MT, Silberhumer G et al (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to re-cellularization with human vascular cells. J Thorac Cardiovasc Surg 127:399–405

    Article  PubMed  Google Scholar 

  77. Tudorache I, Cebotari S, Sturz G et al (2007) Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J Heart Valve Dis 16:567–573

    PubMed  Google Scholar 

  78. Booth C, Korossis SA, Wilcox HE et al (2002) Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 11:457–462

    PubMed  Google Scholar 

  79. Knight RL, Booth C, Wilcox HE et al (2005) Tissue engineering of cardiac valves: re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. J Heart Valve Dis 14:806–813

    PubMed  Google Scholar 

  80. Kim SS, Lim SH, Hong YS et al (2006) Tissue engineering of heart valves in vivo using bone marrow-derived cells. Artif Organs 30:554–557

    Article  PubMed  Google Scholar 

  81. Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006

    Article  PubMed  CAS  Google Scholar 

  82. Dohmen PM, Konertz W (2009) Tissue-engineered heart valve scaffolds. Ann Thorac Cardiovasc Surg 15:362–367

    PubMed  Google Scholar 

  83. Takeuchi Y (2000) Risk of zoonosis in xenotransplantation. Transplant Proc 32:2698–2700

    Article  PubMed  CAS  Google Scholar 

  84. Weiss RA, Magre S, Takeuchi Y (2000) Infection hazards of xenotransplantation. J Infect 40:21–25

    Article  PubMed  CAS  Google Scholar 

  85. Mendelson K, Aikawa E, Mettler BA, Sales V, Martin D, Mayer JE, Schoen FJ (2007) Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Cardiovasc Pathol 16(5):277–282

    Article  PubMed  CAS  Google Scholar 

  86. Burn TC, Petrovick MS, Hohaus S, Rollins BJ, Tenen DG (1994) Monocyte chemoattractant protein-1 gene is expressed in activated neutrophils and retinoic acid-induced human myeloid cell lines. Blood 15(84):2776–2783

    Google Scholar 

  87. Hoerstrup SP, Cummings Mrcs I, Lachat M et al (2006) Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 4(114):59–66

    Google Scholar 

  88. Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy PE (2000) Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 87:378–384

    PubMed  CAS  Google Scholar 

  89. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  PubMed  Google Scholar 

  90. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  CAS  Google Scholar 

  91. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    PubMed  CAS  Google Scholar 

  92. Arras M et al (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101:40–50

    Article  PubMed  CAS  Google Scholar 

  93. Heil M et al (2002) Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 283:2411–2419

    Google Scholar 

  94. Bergmann CE et al (2006) Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. J Leukoc Biol 80:59–65

    Article  PubMed  CAS  Google Scholar 

  95. Grunewald M et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    Article  PubMed  CAS  Google Scholar 

  96. Alon T et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  PubMed  CAS  Google Scholar 

  97. Asahara T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  98. Roh JD, Sawh-Martinez R, Brennan MP, Jay SM, Devine L, Rao DA, Yi T, Mirensky TL, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman WM, Snyder E, Kyriakides TR, Pober JS, Breuer CK (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 9(107):4669–4674

    Article  Google Scholar 

  99. Piemonti L, Guidotti LG, Battaglia M (2010) Modulation of early inflammatory reactions to promote engraftment and function of transplanted pancreatic islets in autoimmune diabetes. Adv Exp Med Biol 654:725–747

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swiss National Science Foundation [32-122273], Swiss South African Joint Research Programme of the State Secretariat for Education and Research, Swiss Government [EX25-2010] as well as the 7th Framework Programme, Life Valve, European Commission [242008].

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon P. Hoerstrup.

Additional information

This article is published as part of the Special Issue on “Implant devices: Biocompatibility, Tissue Engineering and Infection”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, B., Emmert, M.Y., Schoenauer, R. et al. Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 33, 307–315 (2011). https://doi.org/10.1007/s00281-011-0258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0258-8

Keywords

Navigation