Skip to main content

Advertisement

Log in

Assessment of kidney organ quality and prediction of outcome at time of transplantation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The critical importance of donor organ quality, i.e., number of surviving nephrons, ability to withstand injury, and capacity for repair in determining short- and long-term outcomes is becoming increasingly clear. This review provides an overview of studies to assess donor kidney quality and subsequent transplant outcomes based on clinical pathology and transcriptome-based variables available at time of transplantation. Prediction scores using clinical variables function when applied to large data sets but perform poorly for the individual patient. Histopathology findings in pre-implantation or post-reperfusion biopsies help to assess structural integrity of the donor kidney, provide information on pre-existing donor disease, and can serve as a baseline for tracking changes over time. However, more validated approaches of analysis and prospective studies are needed to reduce the number of discarded organs, improve allocation, and allow prediction of outcomes. Molecular profiling detects changes not seen by morphology or captured by clinical markers. In particular, molecular profiles provide a quantitative measurement of inflammatory burden or immune activation and reflect coordinated changes in pathways associated with injury and repair. However, description of transcriptome patterns is not an end in itself. The identification of predictive gene sets and the application to an individualized patient management needs the integration of clinical and pathology-based variables, as well as more objective reference markers of transplant function, post-transplant events, and long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abulezz S (2008) KIM-1 expression in kidney allograft biopsies: improving the gold standard. Kidney Int 73:522–523

    PubMed  CAS  Google Scholar 

  2. Acharya CR, Hsu DS, Anders CK, Anguiano A, Salter KH, Walters KS, Redman RC, Tuchman SA, Moylan CA, Mukherjee S, Barry WT, Dressman HK, Ginsburg GS, Marcom KP, Garman KS, Lyman GH, Nevins JR, Potti A (2008) Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. JAMA 299:1574–1587

    PubMed  CAS  Google Scholar 

  3. Akl A, Ismail AM, Ghoneim M (2008) Prediction of graft survival of living-donor kidney transplantation: nomograms or artificial neural networks? Transplantation 86:1401–1406

    PubMed  Google Scholar 

  4. Allanach K, Mengel M, Einecke G, Sis B, Hidalgo LG, Mueller T, Halloran PF (2008) Comparing microarray versus RT-PCR assessment of renal allograft biopsies: similar performance despite different dynamic ranges. Am J Transplant 8:1006–1015

    PubMed  CAS  Google Scholar 

  5. Anglicheau D, Loupy A, Lefaucheur C, Pessione F, Letourneau I, Cote I, Gaha K, Noel LH, Patey N, Droz D, Martinez F, Zuber J, Glotz D, Thervet E, Legendre C (2008) A simple clinico-histopathological composite scoring system is highly predictive of graft outcomes in marginal donors. Am J Transplant 8:2325–2334

    PubMed  CAS  Google Scholar 

  6. Archer KJ, Mas VR, O'Brien TR, Pfeiffer R, Lum NL, Fisher RA (2009) Quality assessment of microarray data in a multicenter study. Diagn Mol Pathol 18:34–43

    PubMed  CAS  Google Scholar 

  7. Avihingsanon Y, Ma N, Pavlakis M, Chon WJ, Uknis ME, Monaco AP, Ferran C, Stillman I, Schachter AD, Mottley C, Zheng XX, Strom TB (2005) On the intraoperative molecular status of renal allografts after vascular reperfusion and clinical outcomes. J Am Soc Nephrol 16:1542–1548

    PubMed  CAS  Google Scholar 

  8. Bajwa M, Cho YW, Pham PT, Shah T, Danovitch G, Wilkinson A, Bunnapradist S (2007) Donor biopsy and kidney transplant outcomes: an analysis using the Organ Procurement and Transplantation Network/United Network for Organ Sharing (OPTN/UNOS) database. Transplantation 84:1399–1405

    PubMed  Google Scholar 

  9. Basile DP, Fredrich K, Alausa M, Vio CP, Liang M, Rieder MR, Greene AS, Cowley AW Jr (2005) Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. Am J Physiol Renal Physiol 288:F953–F963

    PubMed  CAS  Google Scholar 

  10. Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156

    PubMed  CAS  Google Scholar 

  11. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple hypothesis testing under dependency. Ann Stat 29:1165–1188

    Google Scholar 

  12. Bild AH, Parker JS, Gustafson AM, Acharya CR, Hoadley KA, Anders C, Marcom PK, Carey LA, Potti A, Nevins JR, Perou CM (2009) An integration of complementary strategies for gene-expression analysis to reveal novel therapeutic opportunities for breast cancer. Breast Cancer Res 11:R55

    PubMed  Google Scholar 

  13. Binder PM (2008) Mathematics. Frustration in complexity. Science 320:322–323

    PubMed  CAS  Google Scholar 

  14. Bittner M, Meltzer P, Trent J (1999) Data analysis and integration: of steps and arrows. Nat Genet 22:213–215

    PubMed  CAS  Google Scholar 

  15. Bodonyi-Kovacs G, Putheti P, Marino M et al (2010) Gene expression profiling of the donor kidney at the time of transplantation predicts clinical outcomes 2 years after transplantation. Hum Immunol 71:451–455

    PubMed  CAS  Google Scholar 

  16. Boitnott JK, Solez K (1984) The use of ranking in the statistical assessment of morphologic data. In: Solez K, Whelton A (eds) Acute renal failure: correlations between morphology and function. Marcel Dekker, NewYork, pp 13–16

    Google Scholar 

  17. Boros P, Bromberg JS (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant 6:652–658

    PubMed  CAS  Google Scholar 

  18. Bosma RJ, Doorenbos CR, Stegeman CA, van der Heide JJ, Navis G (2005) Predictive performance of renal function equations in renal transplant recipients: an analysis of patient factors in bias. Am J Transplant 5:2193–2203

    PubMed  Google Scholar 

  19. Bosmans JL, Woestenburg A, Ysebaert DK, Chapelle T, Helbert MJ, Corthouts R, Jurgens A, Van Daele A, Van Marck EA, De Broe ME, Verpooten GA (2000) Fibrous intimal thickening at implantation as a risk factor for the outcome of cadaveric renal allografts. Transplantation 69:2388–2394

    PubMed  CAS  Google Scholar 

  20. Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23:7350–7360

    PubMed  CAS  Google Scholar 

  21. Bromberg JS, Heeger PS, Li XC (2010) Evolving paradigms that determine the fate of an allograft. Am J Transplant 10:1143–1148

    PubMed  CAS  Google Scholar 

  22. Bunnag S, Einecke G, Reeve J, Jhangri GS, Mueller TF, Sis B, Hidalgo LG, Mengel M, Kayser D, Kaplan B, Halloran PF (2009) Molecular correlates of renal function in kidney transplant biopsies. J Am Soc Nephrol 20:1149–1160

    PubMed  Google Scholar 

  23. Burne-Taney MJ, Kofler J, Yokota N, Weisfeldt M, Traystman RJ, Rabb H (2003) Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am J Physiol Renal Physiol 285:F87–F94

    PubMed  CAS  Google Scholar 

  24. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    PubMed  CAS  Google Scholar 

  25. Bustin SA, Dorudi S (2002) The value of microarray techniques for quantitative gene profiling in molecular diagnostics. Trends Mol Med 8:269–272

    PubMed  CAS  Google Scholar 

  26. Cecka JM (2005) The OPTN/UNOS renal transplant registry. Clin Transpl 1–16

  27. Cecka JM, Gritsch HA (2008) Why are nearly half of expanded criteria donor (ECD) kidneys not transplanted? Am J Transplant 8:735–736

    PubMed  CAS  Google Scholar 

  28. Chapman JR (2005) Longitudinal analysis of chronic allograft nephropathy: clinicopathologic correlations. Kidney Int Suppl 99:S108–S112

    PubMed  Google Scholar 

  29. Cicciarelli J, Cho Y, Mateo R, El-Shahawy M, Iwaki Y, Selby R (2005) Renal biopsy donor group: the influence of glomerulosclerosis on transplant outcomes. Transplant Proc 37:712–713

    PubMed  CAS  Google Scholar 

  30. Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73:1008–1016

    PubMed  CAS  Google Scholar 

  31. Colvin RB (2007) Antibody-mediated renal allograft rejection: diagnosis and pathogenesis. J Am Soc Nephrol 18:1046–1056

    PubMed  CAS  Google Scholar 

  32. Colvin RB (2007) Getting out of flatland: into the third dimension of microarrays. Am J Transplant 7:2650–2651

    PubMed  CAS  Google Scholar 

  33. Cosio FG, Pelletier RP, Falkenhain ME, Henry ML, Elkhammas EA, Davies EA, Bumgardner GL, Ferguson RM (1997) Impact of acute rejection and early allograft function on renal allograft survival. Transplantation 63:1611–1615

    PubMed  CAS  Google Scholar 

  34. Cosio FG, Grande JP, Larson TS, Gloor JM, Velosa JA, Textor SC, Griffin MD, Stegall MD (2005) Kidney allograft fibrosis and atrophy early after living donor transplantation. Am J Transplant 5:1130–1136

    PubMed  Google Scholar 

  35. Cosio FG, Grande JP, Wadei H, Larson TS, Griffin MD, Stegall MD (2005) Predicting subsequent decline in kidney allograft function from early surveillance biopsies. Am J Transplant 5:2464–2472

    PubMed  Google Scholar 

  36. Cravedi P, Maggiore U, Mannon RB (2010) Low-density array PCR analysis of reperfusion biopsies: an adjunct to histological analysis. Nephrol Dial Transplant 25:4077–4086

    PubMed  CAS  Google Scholar 

  37. Devarajan P (2005) Cellular and molecular derangements in acute tubular necrosis. Curr Opin Pediatr 17:193–199

    PubMed  Google Scholar 

  38. Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, Jhangri GS, Einecke G, Famulski KS, Halloran P, Yasui Y (2007) Improving gene set analysis of microarray data by SAM-GS. BMC Bioinform 8:242

    Google Scholar 

  39. Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, Jhangri GS, Einecke G, Famulski KS, Halloran P, Yasui Y (2009) Gene-set analysis and reduction. Brief Bioinform 10:24–34

    PubMed  CAS  Google Scholar 

  40. Eapen G, Hinduja A, Abraham G, Kuruvilla S, Panicker V, Thirumalai R, Mutreja J (2000) Does implantation biopsy help in predicting renal allograft management and outcome? Transplant Proc 32:1795

    PubMed  CAS  Google Scholar 

  41. Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J, Savage CO, Howie AJ, Kaur K, Cooper MS, Adu D, Cockwell P (2008) The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int 74:495–504

    PubMed  Google Scholar 

  42. Edwards EB, Posner MP, Maluf DG, Kauffman HM (2004) Reasons for non-use of recovered kidneys: the effect of donor glomerulosclerosis and creatinine clearance on graft survival. Transplantation 77:1411–1415

    PubMed  Google Scholar 

  43. Einecke G, Reeve J, Sis B et al (2010) A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest 120:1862–1872

    PubMed  CAS  Google Scholar 

  44. Ekser B, Rigotti P (2010) Transplantation: can a single criterion determine the use of ECD kidneys? Nat Rev Nephrol 6:68–70

    PubMed  CAS  Google Scholar 

  45. El-Husseini A, Sabry A, Zahran A, Shoker A (2007) Can donor implantation renal biopsy predict long-term renal allograft outcome? Am J Nephrol 27:144–151

    PubMed  Google Scholar 

  46. Escofet X, Osman H, Griffiths DF, Woydag S, Adam Jurewicz W (2003) The presence of glomerular sclerosis at time zero has a significant impact on function after cadaveric renal transplantation. Transplantation 75:344–346

    PubMed  Google Scholar 

  47. Famulski KS, Einecke G, Reeve J, Ramassar V, Allanach K, Mueller T, Hidalgo LG, Zhu LF, Halloran PF (2006) Changes in the transcriptome in allograft rejection: IFN-gamma-induced transcripts in mouse kidney allografts. Am J Transplant 6:1342–1354

    PubMed  CAS  Google Scholar 

  48. Famulski KS, Broderick G, Einecke G, Hay K, Cruz J, Sis B, Mengel M, Halloran PF (2007) Transcriptome analysis reveals heterogeneity in the injury response of kidney transplants. Am J Transplant 7:2483–2495

    PubMed  CAS  Google Scholar 

  49. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    PubMed  CAS  Google Scholar 

  50. Foss A, Heldal K, Scott H, Foss S, Leivestad T, Jorgensen PF, Scholz T, Midtvedt K (2009) Kidneys from deceased donors more than 75 years perform acceptably after transplantation. Transplantation 87:1437–1441

    PubMed  Google Scholar 

  51. Gaber LW, Moore LW, Alloway RR, Amiri MH, Vera SR, Gaber AO (1995) Glomerulosclerosis as a determinant of posttransplant function of older donor renal allografts. Transplantation 60:334–339

    PubMed  CAS  Google Scholar 

  52. Gaspari F, Ferrari S, Stucchi N, Centemeri E, Carrara F, Pellegrino M, Gherardi G, Gotti E, Segoloni G, Salvadori M, Rigotti P, Valente U, Donati D, Sandrini S, Sparacino V, Remuzzi G, Perico N (2004) Performance of different prediction equations for estimating renal function in kidney transplantation. Am J Transplant 4:1826–1835

    PubMed  Google Scholar 

  53. Gera M, Slezak JM, Rule AD, Larson TS, Stegall MD, Cosio FG (2007) Assessment of changes in kidney allograft function using creatinine-based estimates of glomerular filtration rate. Am J Transplant 7:880–887

    PubMed  CAS  Google Scholar 

  54. Giessing M, Liefeldt L (2008) Getting the measure of renal function: determination of best predicted creatinine in living-donor kidney renal transplant recipients based on donor kidney function. Transplantation 86:513–514

    PubMed  Google Scholar 

  55. Gourishankar S, Jhangri GS, Cockfield SM, Halloran PF (2003) Donor tissue characteristics influence cadaver kidney transplant function and graft survival but not rejection. J Am Soc Nephrol 14:493–499

    PubMed  Google Scholar 

  56. Grigoryev DN, Liu M, Hassoun HT, Cheadle C, Barnes KC, Rabb H (2008) The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol 19:547–558

    PubMed  CAS  Google Scholar 

  57. Grossberg JA, Reinert SE, Monaco AP, Gohh R, Morrissey PE (2006) Utility of a mathematical nomogram to predict delayed graft function: a single-center experience. Transplantation 81:155–159

    PubMed  Google Scholar 

  58. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    PubMed  CAS  Google Scholar 

  59. Hall IE, Yarlagadda SG, Coca SG et al (2010) IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol 21:189–197

    PubMed  CAS  Google Scholar 

  60. Halloran PF, Homik J, Goes N, Lui SL, Urmson J, Ramassar V, Cockfield SM (1997) The “injury response”: a concept linking nonspecific injury, acute rejection, and long-term transplant outcomes. Transplant Proc 29:79–81

    PubMed  CAS  Google Scholar 

  61. Halloran PF (1999) Risk factors in renal transplantation and implications for immunosuppressive therapy. Transplant Proc 31:351–352

    PubMed  CAS  Google Scholar 

  62. Halloran PF, Hunsicker LG (2001) Delayed graft function: state of the art, November 10-11, 2000. Summit meeting, Scottsdale, Arizona, USA. Am J Transplant 1:115–120

    PubMed  CAS  Google Scholar 

  63. Hauser P, Schwarz C, Mitterbauer C, Regele HM, Muhlbacher F, Mayer G, Perco P, Mayer B, Meyer TW, Oberbauer R (2004) Genome-wide gene-expression patterns of donor kidney biopsies distinguish primary allograft function. Lab Invest 84:353–361

    PubMed  CAS  Google Scholar 

  64. Health Resources and Services Administration HSB, Division of Transplantation, Rockville, MD (2007) 2007 Annual Report of the U.S. Organ procurement and transplantation network and the scientific registry of transplant recipients: Transplant Data 1997-2006., Rockville, MD

  65. Heng TS, Painter MW (2008) The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 9:1091–1094

    PubMed  CAS  Google Scholar 

  66. Herbst RS, Lippman SM (2007) Molecular signatures of lung cancer–toward personalized therapy. N Engl J Med 356:76–78

    PubMed  CAS  Google Scholar 

  67. Hoffmann SC, Kampen RL, Amur S, Sharaf MA, Kleiner DE, Hunter K, John Swanson S, Hale DA, Mannon RB, Blair PJ, Kirk AD (2002) Molecular and immunohistochemical characterization of the onset and resolution of human renal allograft ischemia-reperfusion injury. Transplantation 74:916–923

    PubMed  CAS  Google Scholar 

  68. Howie AJ, Ferreira MA, Lipkin GW, Adu D (2004) Measurement of chronic damage in the donor kidney and graft survival. Transplantation 77:1058–1065

    PubMed  Google Scholar 

  69. Irish WD, McCollum DA, Tesi RJ, Owen AB, Brennan DC, Bailly JE, Schnitzler MA (2003) Nomogram for predicting the likelihood of delayed graft function in adult cadaveric renal transplant recipients. J Am Soc Nephrol 14:2967–2974

    PubMed  Google Scholar 

  70. Irish WD, Wang J, Brennan DC (2007) Utility of a mathematical nomogram to predict delayed graft function: a single-center experience-critique. Transplantation 83:524–525

    PubMed  Google Scholar 

  71. Jeldres C, Cardinal H, Duclos A, Shariat SF, Suardi N, Capitanio U, Hebert MJ, Karakiewicz PI (2009) Prediction of delayed graft function after renal transplantation. Can Urol Assoc J 3:377–382

    PubMed  Google Scholar 

  72. Jevnikar AM, Mannon RB (2008) Late kidney allograft loss: what we know about it, and what we can do about it. Clin J Am Soc Nephrol 3(Suppl 2):S56–S67

    PubMed  Google Scholar 

  73. Johnston O, O'Kelly P, Spencer S, Donohoe J, Walshe JJ, Little DM, Hickey D, Conlon PJ (2006) Reduced graft function (with or without dialysis) vs immediate graft function—a comparison of long-term renal allograft survival. Nephrol Dial Transplant 21:2270–2274

    PubMed  Google Scholar 

  74. Kainz A, Mitterbauer C, Hauser P, Schwarz C, Regele HM, Berlakovich G, Mayer G, Perco P, Mayer B, Meyer TW, Oberbauer R (2004) Alterations in gene expression in cadaveric vs. live donor kidneys suggest impaired tubular counterbalance of oxidative stress at implantation. Am J Transplant 4:1595–1604

    PubMed  CAS  Google Scholar 

  75. Kainz A, Perco P, Mayer B, Soleiman A, Steininger R, Mayer G, Mitterbauer C, Schwarz C, Meyer TW, Oberbauer R (2007) Gene-expression profiles and age of donor kidney biopsies obtained before transplantation distinguish medium term graft function. Transplantation 83:1048–1054

    PubMed  CAS  Google Scholar 

  76. Kaplan B, Schold J (2009) Transplantation: neural networks for predicting graft survival. Nat Rev Nephrol 5:190–192

    PubMed  Google Scholar 

  77. Karpinski J, Lajoie G, Cattran D, Fenton S, Zaltzman J, Cardella C, Cole E (1999) Outcome of kidney transplantation from high-risk donors is determined by both structure and function. Transplantation 67:1162–1167

    PubMed  CAS  Google Scholar 

  78. Kassirer JP (1971) Clinical evaluation of kidney function–glomerular function. N Engl J Med 285:385–389

    PubMed  CAS  Google Scholar 

  79. Kayler LK, Mohanka R, Basu A, Shapiro R, Randhawa PS (2008) Correlation of histologic findings on preimplant biopsy with kidney graft survival. Transpl Int 21:892–898

    PubMed  Google Scholar 

  80. Kayler LK, Garzon P, Magliocca J, Fujita S, Kim RD, Hemming AW, Howard R, Schold JD (2009) Outcomes and utilization of kidneys from deceased donors with acute kidney injury. Am J Transplant 9:367–373

    PubMed  CAS  Google Scholar 

  81. Knoll GA (2009) Predicting the ideal serum creatinine level following kidney transplantation. Nat Clin Pract Nephrol 5:72–73

    PubMed  CAS  Google Scholar 

  82. Koppelstaetter C, Schratzberger G, Perco P, Hofer J, Mark W, Ollinger R, Oberbauer R, Schwarz C, Mitterbauer C, Kainz A, Karkoszka H, Wiecek A, Mayer B, Mayer G (2008) Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 7:491–497

    PubMed  CAS  Google Scholar 

  83. Kubal C, Bhati C (2006) Delayed graft function: utility of predictive models. Am J Transplant 6:2818–2819

    PubMed  CAS  Google Scholar 

  84. Kurian SM, Flechner SM, Kaouk J, Modlin C, Goldfarb D, Cook DJ, Head S, Salomon DR (2005) Laparoscopic donor nephrectomy gene expression profiling reveals upregulation of stress and ischemia associated genes compared to control kidneys. Transplantation 80:1067–1071

    PubMed  Google Scholar 

  85. Kuypers DR, Chapman JR, O'Connell PJ, Allen RD, Nankivell BJ (1999) Predictors of renal transplant histology at three months. Transplantation 67:1222–1230

    PubMed  CAS  Google Scholar 

  86. Kwon O, Hong SM, Sutton TA, Temm CJ (2008) Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury. Am J Physiol Renal Physiol 295:F351–F359

    PubMed  CAS  Google Scholar 

  87. Lebkowska U, Malyszko J, Lebkowska A, Koc-Zorawska E, Lebkowski W, Malyszko JS, Kowalewski R, Gacko M (2009) Neutrophil gelatinase-associated lipocalin and cystatin C could predict renal outcome in patients undergoing kidney allograft transplantation: a prospective study. Transplant Proc 41:154–157

    PubMed  CAS  Google Scholar 

  88. Lechevallier E, Dussol B, Luccioni A, Thirion X, Vacher-Copomat H, Jaber K, Brunet P, Leonetti F, Lavelle O, Coulange C, Berland Y (1998) Posttransplantation acute tubular necrosis: risk factors and implications for graft survival. Am J Kidney Dis 32:984–991

    PubMed  CAS  Google Scholar 

  89. Lee S, Kim JS, Cho MH, Chae DW, Kim HJ, Nam ES, Yang DY, Kim SY, Choi H, Kim MH, Kim ST (1998) Relationship of renal implantation biopsies and acute rejection during the immediate posttransplantation period. Transplant Proc 30:3070–3071

    PubMed  CAS  Google Scholar 

  90. Levey AS, Perrone RD, Madias NE (1988) Serum creatinine and renal function. Annu Rev Med 39:465–490

    PubMed  CAS  Google Scholar 

  91. Levey AS (1990) Measurement of renal function in chronic renal disease. Kidney Int 38:167–184

    PubMed  CAS  Google Scholar 

  92. Levey AS, Greene T, Kusek JW (2000) A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol 11:A0828

    Google Scholar 

  93. Li X, Hassoun HT, Santora R, Rabb H (2009) Organ crosstalk: the role of the kidney. Curr Opin Crit Care 15:481–487

    PubMed  Google Scholar 

  94. Lu AD, Desai D, Myers BD, Dafoe DC, Alfrey EJ (2000) Severe glomerular sclerosis is not associated with poor outcome after kidney transplantation. Am J Surg 180:470–474

    PubMed  CAS  Google Scholar 

  95. Lu X, Perkins DL (2007) Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures. BMC Bioinform 8:157

    Google Scholar 

  96. Maluf DG, Mas VR, Archer KJ, Yanek K, Gibney EM, King AL, Cotterell A, Fisher RA, Posner MP (2008) Molecular pathways involved in loss of kidney graft function with tubular atrophy and interstitial fibrosis. Mol Med 14:276–285

    PubMed  CAS  Google Scholar 

  97. Malumbres R, Chen J, Tibshirani R, Johnson NA, Sehn LH, Natkunam Y, Briones J, Advani R, Connors JM, Byrne GE, Levy R, Gascoyne RD, Lossos IS (2008) Paraffin-based 6-gene model predicts outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Blood 111:5509–5514

    PubMed  CAS  Google Scholar 

  98. Mancilla E, Avila-Casado C, Uribe-Uribe N, Morales-Buenrostro LE, Rodriguez F, Vilatoba M, Gabilondo B, Aburto S, Rodriguez RM, Magana S, Magana F, Alberu J (2008) Time-zero renal biopsy in living kidney transplantation: a valuable opportunity to correlate predonation clinical data with histological abnormalities. Transplantation 86:1684–1688

    PubMed  Google Scholar 

  99. Mannon RB (2006) Therapeutic targets in the treatment of allograft fibrosis. Am J Transplant 6:867–875

    PubMed  CAS  Google Scholar 

  100. Mas VR, Archer KJ, Scian M et al (2010) Molecular pathways involved in loss of graft function in kidney transplant recipients. Expert Rev Mol Diagn 10:269–284

    PubMed  CAS  Google Scholar 

  101. Mas VR, Archer KJ, Yanek K, Dumur CI, Capparuccini MI, Mangino MJ, King A, Gibney EM, Fisher R, Posner M, Maluf D (2008) Gene expression patterns in deceased donor kidneys developing delayed graft function after kidney transplantation. Transplantation 85:626–635

    PubMed  CAS  Google Scholar 

  102. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    PubMed  CAS  Google Scholar 

  103. McGlynn LM, Stevenson K, Lamb K, Zino S, Brown M, Prina A, Kingsmore D, Shiels PG (2009) Cellular senescence in pretransplant renal biopsies predicts postoperative organ function. Aging Cell 8:45–51

    PubMed  CAS  Google Scholar 

  104. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    PubMed  CAS  Google Scholar 

  105. Meier-Kriesche HU, Schold JD, Kaplan B (2004) Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant 4:1289–1295

    PubMed  Google Scholar 

  106. Melk A, Halloran PF (2001) Cell senescence and its implications for nephrology. J Am Soc Nephrol 12:385–393

    PubMed  CAS  Google Scholar 

  107. Mengel M, Sis B (2008) An appeal for zero-time biopsies in renal transplantation. Am J Transplant 8:2181–2182

    PubMed  CAS  Google Scholar 

  108. Mengel M, Reeve J, Bunnag S, Einecke G, Jhangri GS, Sis B, Famulski K, Guembes-Hidalgo L, Halloran PF (2009) Scoring total inflammation is superior to the current Banff inflammation score in predicting outcome and the degree of molecular disturbance in renal allografts. Am J Transplant 9:1859–1867

    PubMed  CAS  Google Scholar 

  109. Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, Devarajan P (2006) Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 21:856–863

    PubMed  Google Scholar 

  110. Moore J, Ramakrishna S, Tan K, Cockwell P, Eardley K, Little MA, Rylance P, Shivakumar K, Suresh V, Tomlinson K, Ready A, Borrows R (2009) Identification of the optimal donor quality scoring system and measure of early renal function in kidney transplantation. Transplantation 87:578–586

    PubMed  Google Scholar 

  111. Mueller TF, Ma C, Lederer JA, Perkins DL (2003) Differentiation of stress, metabolism, communication, and defense responses following transplantation. J Leukoc Biol 73:379–390

    PubMed  CAS  Google Scholar 

  112. Mueller TF, Einecke G, Reeve J, Sis B, Mengel M, Jhangri GS, Bunnag S, Cruz J, Wishart D, Meng C, Broderick G, Kaplan B, Halloran PF (2007) Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets. Am J Transplant 7:2712–2722

    PubMed  CAS  Google Scholar 

  113. Mueller TF, Raeder J, Oettl K, Zitta S, Klausmann G, Estelberger W, Luyckx VA, Reibnegger G (2008) Cystatin C does not detect acute changes in glomerular filtration rate in early diabetic nephropathy. Ren Fail 30:21–29

    PubMed  CAS  Google Scholar 

  114. Mueller TF, Reeve J, Jhangri GS, Mengel M, Jacaj Z, Cairo L, Obeidat M, Todd G, Moore R, Famulski KS, Cruz J, Wishart D, Meng C, Sis B, Solez K, Kaplan B, Halloran PF (2008) The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am J Transplant 8:78–85

    PubMed  CAS  Google Scholar 

  115. Muhlberger I, Perco P, Fechete R, Mayer B, Oberbauer R (2009) Biomarkers in renal transplantation ischemia reperfusion injury. Transplantation 88:S14–S19

    PubMed  Google Scholar 

  116. Munivenkatappa RB, Schweitzer EJ, Papadimitriou JC, Drachenberg CB, Thom KA, Perencevich EN, Haririan A, Rasetto F, Cooper M, Campos L, Barth RN, Bartlett ST, Philosophe B (2008) The Maryland aggregate pathology index: a deceased donor kidney biopsy scoring system for predicting graft failure. Am J Transplant 8:2316–2324

    PubMed  CAS  Google Scholar 

  117. Mussap M, Dalla Vestra M, Fioretto P, Saller A, Varagnolo M, Nosadini R, Plebani M (2002) Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int 61:1453–1461

    PubMed  CAS  Google Scholar 

  118. Naesens M, Lerut E, de Jonge H, Van Damme B, Vanrenterghem Y, Kuypers DR (2009) Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J Am Soc Nephrol 20:2468–2480

    PubMed  Google Scholar 

  119. Naesens M, Li L, Ying L, Sansanwal P, Sigdel TK, Hsieh SC, Kambham N, Lerut E, Salvatierra O, Butte AJ, Sarwal MM (2009) Expression of complement components differs between kidney allografts from living and deceased donors. J Am Soc Nephrol 20:1839–1851

    PubMed  CAS  Google Scholar 

  120. Nankivell BJ, Fenton-Lee CA, Kuypers DR, Cheung E, Allen RD, O'Connell PJ, Chapman JR (2001) Effect of histological damage on long-term kidney transplant outcome. Transplantation 71:515–523

    PubMed  CAS  Google Scholar 

  121. Nankivell BJ, Borrows RJ, Fung CL, O'Connell PJ, Allen RD, Chapman JR (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349:2326–2333

    PubMed  CAS  Google Scholar 

  122. Nankivell BJ, Borrows RJ, Fung CL, O'Connell PJ, Allen RD, Chapman JR (2004) Evolution and pathophysiology of renal-transplant glomerulosclerosis. Transplantation 78:461–468

    PubMed  Google Scholar 

  123. Nankivell BJ, Chapman JR (2006) Chronic allograft nephropathy: current concepts and future directions. Transplantation 81:643–654

    PubMed  Google Scholar 

  124. Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn PJ (2004) Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int 65:1568–1576

    PubMed  Google Scholar 

  125. Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, Price CP (1995) Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 47:312–318

    PubMed  CAS  Google Scholar 

  126. Nickeleit V (2009) Pathology: donor biopsy evaluation at time of renal grafting. Nat Rev Nephrol 5:249–251

    PubMed  Google Scholar 

  127. Nickolas TL, Barasch J, Devarajan P (2008) Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens 17:127–132

    PubMed  CAS  Google Scholar 

  128. Nijboer WN, Schuurs TA, van der Hoeven JA, Fekken S, Wiersema-Buist J, Leuvenink HG, Hofker S, Homan van der Heide JJ, van Son WJ, Ploeg RJ (2004) Effect of brain death on gene expression and tissue activation in human donor kidneys. Transplantation 78:978–986

    PubMed  Google Scholar 

  129. Nijboer WN, Schuurs TA, Damman J, van Goor H, Vaidya VS, van der Heide JJ, Leuvenink HG, Bonventre JV, Ploeg RJ (2009) Kidney injury molecule-1 is an early noninvasive indicator for donor brain death-induced injury prior to kidney transplantation. Am J Transplant 9:1752–1759

    PubMed  CAS  Google Scholar 

  130. Nyberg SL, Matas AJ, Rogers M, Harmsen WS, Velosa JA, Larson TS, Prieto M, Ishitani MB, Sterioff S, Stegall MD (2001) Donor scoring system for cadaveric renal transplantation. Am J Transplant 1:162–170

    PubMed  CAS  Google Scholar 

  131. Nyberg SL, Matas AJ, Kremers WK, Thostenson JD, Larson TS, Prieto M, Ishitani MB, Sterioff S, Stegall MD (2003) Improved scoring system to assess adult donors for cadaver renal transplantation. Am J Transplant 3:715–721

    PubMed  Google Scholar 

  132. Oh CK, Jeon KO, Kim HJ, Kim SI, Kim YS, Pelletier SJ (2005) Metabolic demand and renal mass supply affecting the early graft function after living donor kidney transplantation. Kidney Int 67:744–749

    PubMed  Google Scholar 

  133. Oh CK, Lee BM, Kim H, Kim SI, Kim YS (2008) Predicting the ideal serum creatinine of kidney transplant recipients by a simple formula based on the balance between metabolic demands of recipients and renal mass supply from donors. Transplant Proc 40:2307–2309

    PubMed  CAS  Google Scholar 

  134. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL (1997) Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 63:968–974

    PubMed  CAS  Google Scholar 

  135. Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P (2006) Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 6:1639–1645

    PubMed  CAS  Google Scholar 

  136. Park W, Griffin M, Grande JP, Cosio F, Stegall MD (2007) Molecular evidence of injury and inflammation in normal and fibrotic renal allografts one year posttransplant. Transplantation 83:1466–1476

    PubMed  CAS  Google Scholar 

  137. Peeters P, Vanholder R (2008) Therapeutic interventions favorably influencing delayed and slow graft function in kidney transplantation: mission impossible? Transplantation 85:S31–S37

    PubMed  Google Scholar 

  138. Perco P, Kainz A, Wilflingseder J, Soleiman A, Mayer B, Oberbauer R (2009) Histogenomics: association of gene expression patterns with histological parameters in kidney biopsies. Transplantation 87:290–295

    PubMed  CAS  Google Scholar 

  139. Perico N, Cattaneo D, Sayegh MH, Remuzzi G (2004) Delayed graft function in kidney transplantation. Lancet 364:1814–1827

    PubMed  Google Scholar 

  140. Pessione F, Cohen S, Durand D, Hourmant M, Kessler M, Legendre C, Mourad G, Noel C, Peraldi MN, Pouteil-Noble C, Tuppin P, Hiesse C (2003) Multivariate analysis of donor risk factors for graft survival in kidney transplantation. Transplantation 75:361–367

    PubMed  Google Scholar 

  141. Pickering JW, Endre ZH (2009) Secondary prevention of acute kidney injury. Curr Opin Crit Care 15:488–497

    PubMed  Google Scholar 

  142. Plata-Munoz JJ, Vazquez-Montes M, Friend PJ et al (2009) The deceased donor score system in kidney transplants from deceased donors after cardiac death. Transpl Int 23:131–139

    PubMed  Google Scholar 

  143. Poggio ED, Wang X, Weinstein DM, Issa N, Dennis VW, Braun WE, Hall PM (2006) Assessing glomerular filtration rate by estimation equations in kidney transplant recipients. Am J Transplant 6:100–108

    PubMed  CAS  Google Scholar 

  144. Poggio ED, Batty DS, Flechner SM (2007) Evaluation of renal function in transplantation. Transplantation 84:131–136

    PubMed  Google Scholar 

  145. Pokorna E, Vitko S, Chadimova M, Schuck O, Ekberg H (2000) Proportion of glomerulosclerosis in procurement wedge renal biopsy cannot alone discriminate for acceptance of marginal donors. Transplantation 69:36–43

    PubMed  CAS  Google Scholar 

  146. Port FK, Bragg-Gresham JL, Metzger RA, Dykstra DM, Gillespie BW, Young EW, Delmonico FL, Wynn JJ, Merion RM, Wolfe RA, Held PJ (2002) Donor characteristics associated with reduced graft survival: an approach to expanding the pool of kidney donors. Transplantation 74:1281–1286

    PubMed  Google Scholar 

  147. Pratschke J, Wilhelm MJ, Kusaka M, Basker M, Cooper DK, Hancock WW, Tilney NL (1999) Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation 67:343–348

    PubMed  CAS  Google Scholar 

  148. Pratschke J, Tullius SG, Neuhaus P (2004) Brain death associated ischemia/reperfusion injury. Ann Transplant 9:78–80

    PubMed  Google Scholar 

  149. Quackenbush J (2003) Genomics. Microarrays–guilt by association. Science 302:240–241

    PubMed  CAS  Google Scholar 

  150. Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, Croker BP, Demetris AJ, Drachenberg CB, Fogo AB, Furness P, Gaber LW, Gibson IW, Glotz D, Goldberg JC, Grande J, Halloran PF, Hansen HE, Hartley B, Hayry PJ, Hill CM, Hoffman EO, Hunsicker LG, Lindblad AS, Yamaguchi Y et al (1999) The Banff 97 working classification of renal allograft pathology. Kidney Int 55:713–723

    PubMed  CAS  Google Scholar 

  151. Randhawa P (2001) Role of donor kidney biopsies in renal transplantation. Transplantation 71:1361–1365

    PubMed  CAS  Google Scholar 

  152. Randhawa PS, Minervini MI, Lombardero M, Duquesnoy R, Fung J, Shapiro R, Jordan M, Vivas C, Scantlebury V, Demetris A (2000) Biopsy of marginal donor kidneys: correlation of histologic findings with graft dysfunction. Transplantation 69:1352–1357

    PubMed  CAS  Google Scholar 

  153. Remuzzi G, Cravedi P, Perna A, Dimitrov BD, Turturro M, Locatelli G, Rigotti P, Baldan N, Beatini M, Valente U, Scalamogna M, Ruggenenti P (2006) Long-term outcome of renal transplantation from older donors. N Engl J Med 354:343–352

    PubMed  CAS  Google Scholar 

  154. Reutzel-Selke A, Filatenkov A, Jurisch A, Denecke C, Martins PN, Pascher A, Jonas S, Pratschke J, Neuhaus P, Tullius SG (2005) Grafts from elderly donors elicit a stronger immune response in the early period posttransplantation: a study in a rat model. Transplant Proc 37:382–383

    PubMed  CAS  Google Scholar 

  155. Rodrigo E, Ruiz JC, Pinera C, Fernandez-Fresnedo G, Escallada R, Palomar R, Cotorruelo JG, Zubimendi JA, Martin de Francisco AL, Arias M (2004) Creatinine reduction ratio on post-transplant day two as criterion in defining delayed graft function. Am J Transplant 4:1163–1169

    PubMed  Google Scholar 

  156. Roodnat JI, van Riemsdijk IC, Mulder PG, Doxiadis I, Claas FH, IJ JN, van Gelder T, Weimar W (2003) The superior results of living-donor renal transplantation are not completely caused by selection or short cold ischemia time: a single-center, multivariate analysis. Transplantation 75:2014–2018

    PubMed  CAS  Google Scholar 

  157. Rosen S, Stillman IE (2008) Acute tubular necrosis is a syndrome of physiologic and pathologic dissociation. J Am Soc Nephrol 19:871–875

    PubMed  Google Scholar 

  158. Sarwal MM (2009) Deconvoluting the 'omics' for organ transplantation. Curr Opin Organ Transplant 14:544–551

    PubMed  Google Scholar 

  159. Sberro R, Zuber J, Froissart M, Canaud G, Prie D, Martinez F, Mamzer-Bruneel MF, Anglicheau D, Legendre C, Thervet E (2008) Determination of lowest possible creatinine in living-donor kidney renal transplant recipients based on donor kidney function. Transplantation 86:558–563

    PubMed  CAS  Google Scholar 

  160. Schaub S, Rush D, Wilkins J, Gibson IW, Weiler T, Sangster K, Nicolle L, Karpinski M, Jeffery J, Nickerson P (2004) Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol 15:219–227

    PubMed  CAS  Google Scholar 

  161. Schlondorff DO (2008) Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int 74:860–866

    PubMed  CAS  Google Scholar 

  162. Schnuelle P, Gottmann U, Koppel H, Brinkkoetter PT, Krzossok S, Weiss J, Schmitt W, Yard BA, Schwarzbach MH, Post S, van der Woude FJ, Birck R (2007) Comparison of early renal function parameters for the prediction of 5-year graft survival after kidney transplantation. Nephrol Dial Transplant 22:235–245

    PubMed  Google Scholar 

  163. Schnuelle P, Gottmann U, Hoeger S, Boesebeck D, Lauchart W, Weiss C, Fischereder M, Jauch KW, Heemann U, Zeier M, Hugo C, Pisarski P, Kramer BK, Lopau K, Rahmel A, Benck U, Birck R, Yard BA (2009) Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial. JAMA 302:1067–1075

    PubMed  CAS  Google Scholar 

  164. Schold JD, Kaplan B (2010) The elephant in the room: failings of current clinical endpoints in kidney transplantation. Am J Transplant 10:1163–1166

    PubMed  CAS  Google Scholar 

  165. Schold JD, Kaplan B, Baliga RS, Meier-Kriesche HU (2005) The broad spectrum of quality in deceased donor kidneys. Am J Transplant 5:757–765

    PubMed  Google Scholar 

  166. Schold JD, Howard RJ (2006) Prediction models assessing transplant center performance: can a little knowledge be a dangerous thing? Am J Transplant 6:245–246

    PubMed  CAS  Google Scholar 

  167. Schroppel B, Kruger B, Walsh L et al (2010) Tubular expression of KIM-1 does not predict delayed function after transplantation. J Am Soc Nephrol 21:536–542

    PubMed  CAS  Google Scholar 

  168. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, Chang AC, Zhu CQ, Strumpf D, Hanash S, Shepherd FA, Ding K, Seymour L, Naoki K, Pennell N, Weir B, Verhaak R, Ladd-Acosta C, Golub T, Gruidl M, Sharma A, Szoke J, Zakowski M, Rusch V, Kris M, Viale A, Motoi N, Travis W, Conley B, Seshan VE, Meyerson M, Kuick R, Dobbin KK, Lively T, Jacobson JW, Beer DG (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827

    PubMed  CAS  Google Scholar 

  169. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA, Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM, Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U, Thierry-Mieg J, Wang C, Wilson M, Wolber PK, Zhang L, Amur S, Bao W, Barbacioru CC, Lucas AB, Bertholet V, Boysen C, Bromley B, Brown D, Brunner A, Canales R, Cao XM, Cebula TA, Chen JJ, Cheng J, Chu TM, Chudin E, Corson J, Corton JC, Croner LJ, Davies C, Davison TS, Delenstarr G, Deng X, Dorris D, Eklund AC, Fan XH, Fang H, Fulmer-Smentek S, Fuscoe JC, Gallagher K, Ge W, Guo L, Guo X, Hager J, Haje PK, Han J, Han T, Harbottle HC, Harris SC, Hatchwell E, Hauser CA, Hester S, Hong H, Hurban P, Jackson SA, Ji H, Knight CR, Kuo WP, LeClerc JE, Levy S, Li QZ, Liu C, Liu Y, Lombardi MJ, Ma Y, Magnuson SR, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B, Novoradovskaya N, Orr MS, Osborn TW, Papallo A, Patterson TA, Perkins RG, Peters EH, Peterson R, Philips KL, Pine PS, Pusztai L, Qian F, Ren H, Rosen M, Rosenzweig BA, Samaha RR, Schena M, Schroth GP, Shchegrova S, Smith DD, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z, Thierry-Mieg D, Thompson KL, Tikhonova I, Turpaz Y, Vallanat B, Van C, Walker SJ, Wang SJ, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C, Xie Q, Xu J, Yang W, Zhong S, Zong Y, Slikker W Jr (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    PubMed  CAS  Google Scholar 

  170. Shoskes DA, Halloran PF (1996) Delayed graft function in renal transplantation: etiology, management and long-term significance. J Urol 155:1831–1840

    PubMed  CAS  Google Scholar 

  171. Shoskes DA, Cecka JM (1998) Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 66:1697–1701

    PubMed  CAS  Google Scholar 

  172. Shoskes DA, Cecka M (1998) Delayed graft function predicts long-term kidney graft survival independent of early acute rejection or discharge creatinine. Am Soc Transplant Phys 17th Annual meeting [Abstract]

  173. Siew ED, Ware LB, Gebretsadik T, Shintani A, Moons KG, Wickersham N, Bossert F, Ikizler TA (2009) Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol 20:1823–1832

    PubMed  CAS  Google Scholar 

  174. Sis B, Mengel M, Haas M et al (2010) Banff '09 meeting report: antibody mediated graft deterioration and implementation of Banff working groups. Am J Transplant 10:464–471

    PubMed  CAS  Google Scholar 

  175. Snanoudj R, Rabant M, Timsit MO, Karras A, Savoye E, Tricot L, Loupy A, Hiesse C, Zuber J, Kreis H, Martinez F, Thervet E, Mejean A, Lebret T, Legendre C, Delahousse M (2009) Donor-estimated GFR as an appropriate criterion for allocation of ECD kidneys into single or dual kidney transplantation. Am J Transplant 9:2542–2551

    PubMed  CAS  Google Scholar 

  176. Solez K, Morel-Maroger L, Sraer JD (1979) The morphology of "acute tubular necrosis" in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 58:362–376

    CAS  Google Scholar 

  177. Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, Halloran PF, Baldwin W, Banfi G, Collins AB, Cosio F, David DS, Drachenberg C, Einecke G, Fogo AB, Gibson IW, Glotz D, Iskandar SS, Kraus E, Lerut E, Mannon RB, Mihatsch M, Nankivell BJ, Nickeleit V, Papadimitriou JC, Randhawa P, Regele H, Renaudin K, Roberts I, Seron D, Smith RN, Valente M (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant 8:753–760

    PubMed  CAS  Google Scholar 

  178. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553

    PubMed  CAS  Google Scholar 

  179. Stillman IE, Pavlakis M (2009) Allograft biopsies: studying them for all they're worth. J Am Soc Nephrol 20:2282–2284

    PubMed  Google Scholar 

  180. Sun Y, Goodison S, Li J, Liu L, Farmerie W (2007) Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23:30–37

    PubMed  CAS  Google Scholar 

  181. Sung RS, Christensen LL, Leichtman AB, Greenstein SM, Distant DA, Wynn JJ, Stegall MD, Delmonico FL, Port FK (2008) Determinants of discard of expanded criteria donor kidneys: impact of biopsy and machine perfusion. Am J Transplant 8:783–792

    PubMed  CAS  Google Scholar 

  182. Suri D, Meyer TW (1999) Influence of donor factors on early function of graft kidneys. J Am Soc Nephrol 10:1317–1323

    PubMed  CAS  Google Scholar 

  183. Swanson SJ, Hypolite IO, Agodoa LY, Batty DS Jr, Hshieh PB, Cruess D, Kirk AD, Peters TG, Abbott KC (2002) Effect of donor factors on early graft survival in adult cadaveric renal transplantation. Am J Transplant 2:68–75

    PubMed  Google Scholar 

  184. Tapiawala SN, Tinckam KJ, Cardella CJ et al (2010) Delayed graft function and the risk for death with a functioning graft. J Am Soc Nephrol 21:153–161

    PubMed  Google Scholar 

  185. Terasaki PI, Cecka JM, Gjertson DW, Takemoto S (1995) High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med 333:333–336

    PubMed  CAS  Google Scholar 

  186. Thurau K, Boylan JW (1976) Acute renal success. The unexpected logic of oliguria in acute renal failure. Am J Med 61:308–315

    PubMed  CAS  Google Scholar 

  187. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572

    PubMed  CAS  Google Scholar 

  188. Tilstone C (2003) DNA microarrays: vital statistics. Nature 424:610–612

    PubMed  CAS  Google Scholar 

  189. Tullius SG, Volk HD, Neuhaus P (2001) Transplantation of organs from marginal donors. Transplantation 72:1341–1349

    PubMed  CAS  Google Scholar 

  190. Ugarte R, Kraus E, Montgomery RA, Burdick JF, Ratner L, Haas M, Hawxby AM, Karp SJ (2005) Excellent outcomes after transplantation of deceased donor kidneys with high terminal creatinine and mild pathologic lesions. Transplantation 80:794–800

    PubMed  CAS  Google Scholar 

  191. van't Veer LJ, Bernards R (2008) Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452:564–570

    Google Scholar 

  192. Vazquez MA, Jeyarajah DR, Kielar ML, Lu CY (2000) Long-term outcomes of renal transplantation: a result of the original endowment of the donor kidney and the inflammatory response to both alloantigens and injury. Curr Opin Nephrol Hypertens 9:643–648

    PubMed  CAS  Google Scholar 

  193. Verran D, Sheridan A, Barnwell A, Berriman M, Chapman J (2005) Biopsy of potential cadaveric renal allografts at the time of retrieval. Nephrology (Carlton) 10:414–417

    Google Scholar 

  194. Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–679

    PubMed  CAS  Google Scholar 

  195. West M, Ginsburg GS, Huang AT, Nevins JR (2006) Embracing the complexity of genomic data for personalized medicine. Genome Res 16:559–566

    PubMed  CAS  Google Scholar 

  196. Westhoff JH, Schildhorn C, Jacobi C et al (2010) Telomere shortening reduces regenerative capacity after acute kidney injury. J Am Soc Nephrol 21:327–336

    PubMed  CAS  Google Scholar 

  197. Wijnen RM, Booster MH, Stubenitsky BM, de Boer J, Heineman E, Kootstra G (1995) Outcome of transplantation of non-heart-beating donor kidneys. Lancet 345:1067–1070

    PubMed  CAS  Google Scholar 

  198. Wilflingseder J, Kainz A, Muhlberger I et al (2010) Impaired metabolism in donor kidney grafts after steroid pretreatment. Transpl Int 23:796–804

    PubMed  CAS  Google Scholar 

  199. Wilflingseder J, Kainz A, Mitterbauer C, Mayer B, Oberbauer R (2007) A multicenter RCT of deceased organ donor pre-treatment with corticosteroids for teh prevention of postischemic acute renal failure. J Am Soc Nephrol 18:31A

    Google Scholar 

  200. Wills LP, Schnellmann RG (2010) Telomere shortening and regenerative capacity after acute kidney injury. J Am Soc Nephrol 21:202–204

    PubMed  CAS  Google Scholar 

  201. Womer KL, Kaplan B (2009) Recent developments in kidney transplantation–a critical assessment. Am J Transplant 9:1265–1271

    PubMed  CAS  Google Scholar 

  202. Xie Y, Minna JD (2008) Predicting the future for people with lung cancer. Nat Med 14:812–813

    PubMed  CAS  Google Scholar 

  203. Yarlagadda SG, Coca SG, Garg AX, Doshi M, Poggio E, Marcus RJ, Parikh CR (2008) Marked variation in the definition and diagnosis of delayed graft function: a systematic review. Nephrol Dial Transplant 23:2995–3003

    PubMed  Google Scholar 

  204. Yarlagadda SG, Klein CL, Jani A (2008) Long-term renal outcomes after delayed graft function. Adv Chronic Kidney Dis 15:248–256

    PubMed  Google Scholar 

  205. Yilmaz S, Tomlanovich S, Mathew T, Taskinen E, Paavonen T, Navarro M, Ramos E, Hooftman L, Hayry P (2003) Protocol core needle biopsy and histologic Chronic Allograft Damage Index (CADI) as surrogate end point for long-term graft survival in multicenter studies. J Am Soc Nephrol 14:773–779

    PubMed  Google Scholar 

  206. Ying L, Sarwal M (2009) In praise of arrays. Pediatr Nephrol 24:1643–1659, quiz 1655, 1659

    PubMed  Google Scholar 

  207. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    PubMed  CAS  Google Scholar 

  208. Zhang PL, Rothblum LI, Han WK, Blasick TM, Potdar S, Bonventre JV (2008) Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int 73:608–614

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank Dr Valerie Luyckx for her critical reading of the manuscript and the many suggestions made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Mueller.

Additional information

This article is published as part of the Special Issue on Transplantation and Tolerance

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, T.F., Solez, K. & Mas, V. Assessment of kidney organ quality and prediction of outcome at time of transplantation. Semin Immunopathol 33, 185–199 (2011). https://doi.org/10.1007/s00281-011-0248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0248-x

Keywords

Navigation