Skip to main content

Advertisement

Log in

Human IRGM gene “to be or not to be”

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The immunity-related GTPases (IRG proteins) are one of the strongest early resistance systems against intracellular pathogens. The IRG gene family contains 21 copies arranged as tandem gene clusters on two chromosomes in the C57BL/6 mouse genome but has been reduced to only two copies in humans: IRGC and IRGM. IRGC is not involved in immunity, but the human IRGM gene plays a role in autophagy-targeted destruction of Mycobacterium tuberculosis (BCG) and Salmonella typhimurium. Variant IRGM haplotypes have been associated with increased risk for Crohn’s disease and correlated with differential expression of IRGM transcripts. This article reviews in detail the studies performed on human samples, in vitro, and in sequence analyses that provide evidence for the unusual evolutionary history of the IRGM locus and the important role of the IRGM gene in autophagy and Crohn’s disease in response to pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collazo CM, Yap GS, Sempowski GD, Lusby KC, Tessarollo L, Woude GFV, Sher A, Taylor GA (2001) Inactivation of LRG-47 and IRG-47 reveals a family of interferon {gamma}-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 194:181–188

    Article  CAS  PubMed  Google Scholar 

  2. Taylor G, Collazo C, Yap G, Nguyen K, Gregorio T, Taylor L, Eagleson B, Secrest L, Southon E, Reid S, Tessarollo L, Bray M, McVicar D, Komschlies K, Young H, Biron C, Sher A, Vande Woude G (2000) Pathogen-specific loss of host resistance in mice lacking the IFN-gamma-inducible gene IGTP. PNAS 97:751–755

    Article  CAS  PubMed  Google Scholar 

  3. MacMicking J, Taylor GA, McKinney J (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659

    Article  CAS  PubMed  Google Scholar 

  4. Taylor GA (2004) p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol 4:100–109

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein-Hanley I, Coers J, Balsara ZR, Taylor GA, Starnbach MN, Dietrich WF (2006) The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice. Proc Natl Acad Sci USA 103:14092–14097

    Article  CAS  PubMed  Google Scholar 

  6. Macmicking JD (2005) Immune control of phagosomal bacteria by p47 GTPases. Curr Opin Microbiol 8:74–82

    Article  CAS  PubMed  Google Scholar 

  7. Taylor GA (2007) IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cell Microbiol 9:1099–1107

    Article  CAS  PubMed  Google Scholar 

  8. Howard J (2008) The IRG proteins: a function in search of a mechanism. Immunobiology 213:367–375

    Article  CAS  PubMed  Google Scholar 

  9. Zhao YO, Rohde C, Lilue JT, Konen-Waisman S, Khaminets A, Hunn JP, Howard JC (2009) Toxoplasma gondii and the immunity-related GTPase (IRG) resistance system in mice: a review. Mem Inst Oswaldo Cruz 104:234–240

    Article  CAS  PubMed  Google Scholar 

  10. Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92

    Article  PubMed  CAS  Google Scholar 

  11. Shenoy AR, Kim BH, Choi HP, Matsuzawa T, Tiwari S, MacMicking JD (2007) Emerging themes in IFN-gamma-induced macrophage immunity by the p47 and p65 GTPase families. Immunobiology 212:771–784

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh A, Uthaiah R, Howard J, Herrmann C, Wolf E (2004) Crystal structure of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. Mol Cell 15:727–739

    Article  CAS  PubMed  Google Scholar 

  13. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72

    Article  CAS  PubMed  Google Scholar 

  14. Boehm U, Guethlein L, Klamp T, Ozbek K, Schaub A, Fütterer A, Pfeffer K, Howard JC (1998) Two families of GTPases dominate the complex cellular response to interferon-γ. J Immunol 161:6715–6723

    CAS  PubMed  Google Scholar 

  15. Bekpen C, Marques-Bonet T, Alkan C, Antonacci F, Leogrande MB, Ventura M, Kidd JM, Siswara P, Howard JC, Eichler EE (2009) Death and resurrection of the human IRGM gene. PLoS Genet 5:e1000403

    Article  PubMed  CAS  Google Scholar 

  16. Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74

    Article  CAS  PubMed  Google Scholar 

  17. Conti E, Izaurralde E (2005) Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17:316–325

    Article  CAS  PubMed  Google Scholar 

  18. Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441

    Article  CAS  PubMed  Google Scholar 

  19. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Onnie CM, McArdle W, Strachan D, Bethel G, Bryan C, Lewis CM, Deloukas P, Forbes A, Sanderson J, Jewell DP, Satsangi J, Mansfield JC, Cardon L, Mathew CG (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832

    Article  CAS  PubMed  Google Scholar 

  20. Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ, Nimmo ER, Massey D, Berzuini C, Johnson C, Barrett JC, Cummings FR, Drummond H, Lees CW, Onnie CM, Hanson CE, Blaszczyk K, Inouye M, Ewels P, Ravindrarajah R, Keniry A, Hunt S, Carter M, Watkins N, Ouwehand W, Lewis CM, Cardon L, Lobo A, Forbes A, Sanderson J, Jewell DP, Mansfield JC, Deloukas P, Mathew CG, Parkes M, Satsangi J (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40(6):710–712

    Article  CAS  PubMed  Google Scholar 

  21. Franke A, Balschun T, Karlsen TH, Hedderich J, May S, Lu T, Schuldt D, Nikolaus S, Rosenstiel P, Krawczak M, Schreiber S (2008) Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 40:713–715

    Article  CAS  PubMed  Google Scholar 

  22. Roberts RL, Hollis-Moffatt JE, Gearry RB, Kennedy MA, Barclay ML, Merriman TR (2008) Confirmation of association of IRGM and NCF4 with ileal Crohn’s disease in a population-based cohort. Genes Immun 9:561–565

    Article  CAS  PubMed  Google Scholar 

  23. Latiano A, Palmieri O, Cucchiara S, Castro M, D’Inca R, Guariso G, Dallapiccola B, Valvano MR, Latiano T, Andriulli A, Annese V (2009) Polymorphism of the IRGM gene might predispose to fistulizing behavior in Crohn’s disease. Am J Gastroenterol 104:110–116

    Article  CAS  PubMed  Google Scholar 

  24. Weersma RK, Stokkers PC, Cleynen I, Wolfkamp SC, Henckaerts L, Schreiber S, Dijkstra G, Franke A, Nolte IM, Rutgeerts P, Wijmenga C, Vermeire S (2009) Confirmation of multiple Crohn’s disease susceptibility loci in a large Dutch–Belgian cohort. Am J Gastroenterol 104:630–638

    Article  CAS  PubMed  Google Scholar 

  25. Palomino-Morales RJ, Oliver J, Gomez-Garcia M, Lopez-Nevot MA, Rodrigo L, Nieto A, Alizadeh BZ, Martin J (2009) Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach. Genes Immun 10:356–364

    Article  CAS  PubMed  Google Scholar 

  26. McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody MC, Hall JL, Brant SR, Cho JH, Duerr RH, Silverberg MS, Taylor KD, Rioux JD, Altshuler D, Daly MJ, Xavier RJ (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 40:1107–1112

    Article  CAS  PubMed  Google Scholar 

  27. Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, Vukcevic D et al (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464:713–720

    Article  CAS  PubMed  Google Scholar 

  28. Intemann CD, Thye T, Niemann S, Browne EN, Amanua Chinbuah M, Enimil A, Gyapong J, Osei I, Owusu-Dabo E, Helm S, Rusch-Gerdes S, Horstmann RD, Meyer CG (2009) Autophagy gene variant IRGM −261 T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 5:e1000577

    Article  PubMed  CAS  Google Scholar 

  29. Prescott NJ, Dominy KM, Kubo M, Lewis CM, Fisher SA, Redon R, Huang N, Stranger BE, Blaszczyk K, Hudspith B, Parkes G, Hosono N, Yamazaki K, Onnie CM, Forbes A, Dermitzakis ET, Nakamura Y, Mansfield JC, Sanderson J, Hurles ME, Roberts RG, Mathew CG (2010) Independent and population-specific association of risk variants at the IRGM locus with Crohn’s disease. Hum Mol Genet 19:1828–1839

    Article  CAS  PubMed  Google Scholar 

  30. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307:734–738

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734

    Article  CAS  PubMed  Google Scholar 

  32. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    Article  CAS  PubMed  Google Scholar 

  33. Zhang G, Huang Y, Yan K, Li W, Fan X, Liang Y, Sun L, Li H, Zhang S, Gao M, Du W, Yang S, Liu J, Zhang X (2006) Diverse phenotype of Brooke–Spiegler syndrome associated with a nonsense mutation in the CYLD tumor suppressor gene. Exp Dermatol 15:966–970

    Article  PubMed  Google Scholar 

  34. Costello CM, Mah N, Hasler R, Rosenstiel P, Waetzig GH, Hahn A, Lu T, Gurbuz Y, Nikolaus S, Albrecht M, Hampe J, Lucius R, Kloppel G, Eickhoff H, Lehrach H, Lengauer T, Schreiber S (2005) Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med 2:e199

    Article  PubMed  CAS  Google Scholar 

  35. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N, Stappenbeck TS, HWt V (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263

    Article  CAS  PubMed  Google Scholar 

  36. Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M (2010) Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol 11:R26

    Article  PubMed  CAS  Google Scholar 

  37. Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    Article  CAS  PubMed  Google Scholar 

  38. Price AL, Eskin E, Pevzner PA (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14:2245–2252

    Article  CAS  PubMed  Google Scholar 

  39. Svensson AC, Raudsepp T, Larsson C, Di Cristofano A, Chowdhary B, La Mantia G, Rask L, Andersson G (2001) Chromosomal distribution, localization and expression of the human endogenous retrovirus ERV9. Cytogenet Cell Genet 92:89–96

    Article  CAS  PubMed  Google Scholar 

  40. Lower R, Lower J, Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93:5177–5184

    Article  CAS  PubMed  Google Scholar 

  41. Bannert N, Kurth R (2006) The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet 7:149–173

    Article  CAS  PubMed  Google Scholar 

  42. Patience C, Wilkinson DA, Weiss RA (1997) Our retroviral heritage. Trends Genet 13:116–120

    Article  CAS  PubMed  Google Scholar 

  43. Costas J, Naveira H (2000) Evolutionary history of the human endogenous retrovirus family ERV9. Mol Biol Evol 17:320–330

    CAS  PubMed  Google Scholar 

  44. Ling J, Pi W, Bollag R, Zeng S, Keskintepe M, Saliman H, Krantz S, Whitney B, Tuan D (2002) The solitary long terminal repeats of ERV-9 endogenous retrovirus are conserved during primate evolution and possess enhancer activities in embryonic and hematopoietic cells. J Virol 76:2410–2423

    Article  CAS  PubMed  Google Scholar 

  45. Di Cristofano A, Strazullo M, Longo L, La Mantia G (1995) Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retroviral family. Nucleic Acids Res 23:2823–2830

    Article  PubMed  Google Scholar 

  46. Di Cristofano A, Strazzullo M, Parisi T, La Mantia G (1995) Mobilization of an ERV9 human endogenous retroviral element during primate evolution. Virology 213:271–275

    Article  PubMed  Google Scholar 

  47. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671

    Article  CAS  PubMed  Google Scholar 

  48. Tian D, Araki H, Stahl E, Bergelson J, Kreitman M (2002) Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci USA 99:11525–11530

    Article  CAS  PubMed  Google Scholar 

  49. Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    Article  CAS  PubMed  Google Scholar 

  50. Staeheli P, Grob R, Meier E, Sutcliffe J, Haller O (1988) Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol Cell Biol 8:4518–4523

    CAS  PubMed  Google Scholar 

  51. Haller O, Acklin M, Staeheli P (1987) Influenza virus resistance of wild mice: wild-type and mutant Mx alleles occur at comparable frequencies. J Interferon Res 7:647–656

    CAS  PubMed  Google Scholar 

  52. Jin H, Yamashita T, Ochiai K, Haller O, Watanabe T (1998) Characterization and expression of the Mx1 gene in wild mouse species. Biochem Genet 36:311–322

    Article  CAS  PubMed  Google Scholar 

  53. Hunn JP, Koenen-Waisman S, Papic N, Schroeder N, Pawlowski N, Lange R, Kaiser F, Zerrahn J, Martens S, Howard JC (2008) Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J 27:2495–2509

    Article  CAS  PubMed  Google Scholar 

  54. Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, Reichmann G, Howard JC (2005) Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog 1:e24

    Article  PubMed  CAS  Google Scholar 

  55. Papic N, Hunn JP, Pawlowski N, Zerrahn J, Howard JC (2008) Inactive and active states of the interferon-inducible resistance GTPase, Irga6, in vivo. J Biol Chem 283:32143–32151

    Article  CAS  PubMed  Google Scholar 

  56. Feng CG, Zheng L, Lenardo MJ, Sher A (2009) Interferon-inducible immunity-related GTPase Irgm1 regulates IFN gamma-dependent host defense, lymphocyte survival and autophagy. Autophagy 5:232–234

    Article  CAS  PubMed  Google Scholar 

  57. Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA (2008) The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2:83–89

    Article  CAS  PubMed  Google Scholar 

  58. Hunn JP, Howard J (2010) The mouse resistance protein, Irgm1 (LRG-47): a regulator or an effector of pathogen defense? PLoS Pathog 6(7):e1001008

    Article  PubMed  CAS  Google Scholar 

  59. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848

    Article  CAS  PubMed  Google Scholar 

  60. Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832

    Article  CAS  PubMed  Google Scholar 

  61. Pfefferkorn ER (1984) Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci USA 81:908–912

    Article  CAS  PubMed  Google Scholar 

  62. Robinson CM, Shirey KA, Carlin JM (2003) Synergistic transcriptional activation of indoleamine dioxygenase by IFN-gamma and tumor necrosis factor-alpha. J Interferon Cytokine Res 23:413–421

    Article  CAS  PubMed  Google Scholar 

  63. Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953

    Article  CAS  PubMed  Google Scholar 

  64. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  CAS  PubMed  Google Scholar 

  65. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    Article  CAS  PubMed  Google Scholar 

  66. Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, Whitmire WM, Crane DD, Steele-Mortimer O, Kari L, McClarty G, Caldwell HD (2005) Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci USA 102:10658–10663

    Article  CAS  PubMed  Google Scholar 

  67. Jiang Z, Tang H, Ventura M, Cardone MF, Marques-Bonet T, She X, Pevzner PA, Eichler EE (2007) Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat Genet 39:1361–1368

    Article  CAS  PubMed  Google Scholar 

  68. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to Jonathan C. Howard for his critical discussions and suggestions during the preparation of this manuscript, which helped us to refine our discussions. We thank Stefan Fuss for carefully editing the text, and we are also indebted to Hicham Bouabe and Can Alkan for their help and specific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemaletin Bekpen.

Additional information

This article is published as part of the Special Issue on Autophagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekpen, C., Xavier, R.J. & Eichler, E.E. Human IRGM gene “to be or not to be”. Semin Immunopathol 32, 437–444 (2010). https://doi.org/10.1007/s00281-010-0224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0224-x

Keywords

Navigation