Skip to main content

Advertisement

Log in

SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in T cell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang N, Morra M, Wu C, Gullo C, Howie D, Coyle T, Engel P, Terhorst C (2001) CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells. Immunogenetics 53:382–394

    Article  CAS  PubMed  Google Scholar 

  2. Tovar V, del Valle J, Zapater N, Martin M, Romero X, Pizcueta P, Bosch J, Terhorst C, Engel P (2002) Mouse novel Ly9: a new member of the expanding CD150 (SLAM) family of leukocyte cell-surface receptors. Immunogenetics 54:394–402

    Article  CAS  PubMed  Google Scholar 

  3. Fraser CC, Howie D, Morra M, Qiu Y, Murphy C, Shen Q, Gutierrez-Ramos JC, Coyle A, Kingsbury GA, Terhorst C (2002) Identification and characterization of SF2000 and SF2001, two new members of the immune receptor SLAM/CD2 family. Immunogenetics 53:843–850

    Article  CAS  PubMed  Google Scholar 

  4. Staunton DE, Thorley-Lawson DA (1987) Molecular cloning of the lymphocyte activation marker Blast-1. EMBO J 6:3695–3701

    CAS  PubMed  Google Scholar 

  5. Yokoyama S, Staunton D, Fisher R, Amiot M, Fortin JJ, Thorley-Lawson DA (1991) Expression of the Blast-1 activation/adhesion molecule and its identification as CD48. J Immunol 146:2192–2200

    CAS  PubMed  Google Scholar 

  6. Calpe S, Wang N, Romero X, Berger SB, Lanyi A, Engel P, Terhorst C (2008) The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol 97:177–250

    Article  CAS  PubMed  Google Scholar 

  7. Engel P, Eck MJ, Terhorst C (2003) The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 3:813–821

    Article  CAS  PubMed  Google Scholar 

  8. Cao E, Ramagopal UA, Fedorov A, Fedorov E, Yan Q, Lary JW, Cole JL, Nathenson SG, Almo SC (2006) NTB-A receptor crystal structure: insights into homophilic interactions in the signaling lymphocytic activation molecule receptor family. Immunity 25:559–570

    Article  CAS  PubMed  Google Scholar 

  9. Yan Q, Malashkevich VN, Fedorov A, Fedorov E, Cao E, Lary JW, Cole JL, Nathenson SG, Almo SC (2007) Structure of CD84 provides insight into SLAM family function. Proc Natl Acad Sci 104:10583–10588

    Article  CAS  PubMed  Google Scholar 

  10. Roda-Navarro P, Mittelbrunn M, Ortega M, Howie D, Terhorst C, Sanchez-Madrid F, Fernandez-Ruiz E (2004) Dynamic redistribution of the activating 2B4/SAP complex at the cytotoxic NK cell immune synapse. J Immunol 173:3640–3646

    CAS  PubMed  Google Scholar 

  11. Howie D, Okamoto S, Rietdijk S, Clarke K, Wang N, Gullo C, Bruggeman JP, Manning S, Coyle AJ, Greenfield E, Kuchroo V, Terhorst C (2002) The role of SAP in murine CD150 (SLAM)-mediated T-cell proliferation and interferon gamma production. Blood 100:2899–2907

    Article  CAS  PubMed  Google Scholar 

  12. Rethi B, Gogolak P, Szatmari I, Veres A, Erdos E, Nagy L, Rajnavolgyi E, Terhorst C, Lanyi A (2006) SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood 107:2821–2829

    Article  CAS  PubMed  Google Scholar 

  13. Martin M, Del Valle JM, Saborit I, Engel P (2005) Identification of Grb2 as a novel binding partner of the signaling lymphocytic activation molecule-associated protein binding receptor CD229. J Immunol 174:5977–5986

    CAS  PubMed  Google Scholar 

  14. Del Valle JM, Engel P, Martin M (2003) The cell surface expression of SAP-binding receptor CD229 is regulated via its interaction with clathrin-associated adaptor complex 2 (AP-2). J Biol Chem 278:17430–17437

    Article  PubMed  CAS  Google Scholar 

  15. Purtilo DT, Cassel CK, Yang JP, Harper R (1975) X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet 1:935–940

    Article  CAS  PubMed  Google Scholar 

  16. Harrington DS, Weisenburger DD, Purtilo DT (1987) Malignant lymphoma in the X-linked lymphoproliferative syndrome. Cancer 59:1419–1429

    Article  CAS  PubMed  Google Scholar 

  17. Egeler RM, de Kraker J, Slater R, Purtilo DT (1992) Documentation of Burkitt lymphoma with t(8;14) (q24;q32) in X-linked lymphoproliferative disease. Cancer 70:683–687

    Article  CAS  PubMed  Google Scholar 

  18. Schuster V, Terhorst C (2006) Primary immunodeficiency diseases: a molecular and cellular approach, 2nd edn. Oxford University Press, Oxford, pp 470–484

    Google Scholar 

  19. Morra M, Howie D, Grande MS, Sayos J, Wang N, Wu C, Engel P, Terhorst C (2001) X-linked lymphoproliferative disease: a progressive immunodeficiency. Annu Rev Immunol 19:657–682

    Article  CAS  PubMed  Google Scholar 

  20. Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, Klein G, Seri M, Wakiguchi H, Purtilo DT, Gross TG (2000) Correlation of mutations of the SH2D1A gene and Epstein–Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood 96:3118–3125

    CAS  PubMed  Google Scholar 

  21. Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, Cantley LC, Terhorst C, Eck MJ (1999) Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol Cell 4:555–561

    Article  CAS  PubMed  Google Scholar 

  22. Morra M, Silander O, Calpe S, Choi M, Oettgen H, Myers L, Etzioni A, Buckley R, Terhorst C (2001) Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome. Blood 98:1321–1325

    Article  CAS  PubMed  Google Scholar 

  23. Parolini O, Kagerbauer B, Simonitsch-Klupp I, Ambros P, Jaeger U, Mann G, Haas OA, Morra M, Gadner H, Terhorst C, Knapp W, Holter W (2002) Analysis of SH2D1A mutations in patients with severe Epstein–Barr virus infections, Burkitt’s lymphoma, and Hodgkin’s lymphoma. Ann Hematol 81:441–447

    Article  CAS  PubMed  Google Scholar 

  24. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, Galicier L, Le Deist F, Rieux-Laucat F, Revy P, Fischer A, de Saint BG, Latour S (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–114

    Article  CAS  PubMed  Google Scholar 

  25. Latour S (2007) Natural killer T cells and X-linked lymphoproliferative syndrome. Curr Opin Allergy Clin Immunol 7:510–514

    Article  PubMed  Google Scholar 

  26. Marodi L, Notarangelo LD (2007) Immunological and genetic bases of new primary immunodeficiencies. Nat Rev Immunol 7:851–861

    Article  CAS  PubMed  Google Scholar 

  27. Rumble JM, Oetjen KA, Stein PL, Schwartzberg PL, Moore BB, Duckett CS (2009) Phenotypic differences between mice deficient in XIAP and SAP, two factors targeted in X-linked lymphoproliferative syndrome (XLP). Cell Immunol 259:82–89

    Article  CAS  PubMed  Google Scholar 

  28. Morra M, Simarro-Grande M, Martin M, Chen AS, Lanyi A, Silander O, Calpe S, Davis J, Pawson T, Eck MJ, Sumegi J, Engel P, Li SC, Terhorst C (2001) Characterization of SH2D1A missense mutations identified in X-linked lymphoproliferative disease patients. J Biol Chem 276:36809–36816

    Article  CAS  PubMed  Google Scholar 

  29. Wu C, Sayos J, Wang N, Howie D, Coyle A, Terhorst C (2000) Genomic organization and characterization of mouse SAP, the gene that is altered in X-linked lymphoproliferative disease. Immunogenetics 51:805–815

    Article  CAS  PubMed  Google Scholar 

  30. Hare NJ, Ma CS, Alvaro F, Nichols KE, Tangye SG (2006) Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP. Int Immunol 18:1055–1065

    Article  CAS  PubMed  Google Scholar 

  31. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, van Schaik S, Notarangelo L, Geha R, Roncarolo MG, Oettgen H, De Vries JE, Aversa G, Terhorst C (1998) The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395:462–469

    Article  CAS  PubMed  Google Scholar 

  32. Hwang PM, Li C, Morra M, Lillywhite J, Muhandiram DR, Gertler F, Terhorst C, Kay LE, Pawson T, Forman-Kay JD, Li SC (2002) A “three-pronged” binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome. EMBO J 21:314–323

    Article  CAS  PubMed  Google Scholar 

  33. Finerty PJ, Muhandiram R, Forman-Kay JD (2002) Side-chain dynamics of the SAP SH2 domain correlate with a binding hot spot and a region with conformational plasticity. J Mol Biol 322:605–620

    Article  CAS  PubMed  Google Scholar 

  34. Eissmann P, Beauchamp L, Wooters J, Tilton JC, Long EO, Watzl C (2005) Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood 105:4722–4729

    Article  CAS  PubMed  Google Scholar 

  35. Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C (2001) Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. EMBO J 20:5840–5852

    Article  CAS  PubMed  Google Scholar 

  36. Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, Eck MJ (2003) SAP couples Fyn to SLAM immune receptors. Nat Cell Biol 5:155–160

    Article  CAS  PubMed  Google Scholar 

  37. Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM, Okano M, Lanyi A, Sumegi J (1995) X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res 38:471–478

    Article  CAS  PubMed  Google Scholar 

  38. Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, Davidson D, Veillette A (2003) Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol 5:149–154

    Article  CAS  PubMed  Google Scholar 

  39. Simarro M, Lanyi A, Howie D, Poy F, Bruggeman J, Choi M, Sumegi J, Eck MJ, Terhorst C (2004) SAP increases FynT kinase activity and is required for phosphorylation of SLAM and Ly9. Int Immunol 16:727–736

    Article  CAS  PubMed  Google Scholar 

  40. Chen R, Latour S, Shi X, Veillette A (2006) Association between SAP and FynT: inducible SH3 domain-mediated interaction controlled by engagement of the SLAM receptor. Mol Cell Biol 26:5559–5568

    Article  CAS  PubMed  Google Scholar 

  41. Li W, Sofi MH, Rietdijk S, Wang N, Terhorst C, Chang CH (2007) The SLAM-associated protein signaling pathway is required for development of CD4+ T cells selected by homotypic thymocyte interaction. Immunity 27:763–774

    Article  CAS  PubMed  Google Scholar 

  42. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, Mamchak AA, Terhorst C, Bendelac A (2007) Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27:751–762

    Article  CAS  PubMed  Google Scholar 

  43. Cannons JL, Yu LJ, Hill B, Mijares LA, Dombroski D, Nichols KE, Antonellis A, Koretzky GA, Gardner K, Schwartzberg PL (2004) SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity 21:693–706

    Article  CAS  PubMed  Google Scholar 

  44. Borowski C, Bendelac A (2005) Signaling for NKT cell development: the SAP–FynT connection. J Exp Med 201:833–836

    Article  CAS  PubMed  Google Scholar 

  45. Gu C, Tangye SG, Sun X, Luo Y, Lin Z, Wu J (2006) The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation. Proc Natl Acad Sci 103:14447–14452

    Article  CAS  PubMed  Google Scholar 

  46. Czar MJ, Kersh EN, Mijares LA, Lanier G, Lewis J, Yap G, Chen A, Sher A, Duckett CS, Ahmed R, Schwartzberg PL (2001) Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc Natl Acad Sci USA 98:7449–7454

    Article  CAS  PubMed  Google Scholar 

  47. Crotty S, McCausland MM, Aubert RD, Wherry EJ, Ahmed R (2006) Hypogammaglobulinemia and exacerbated CD8 T-cell-mediated immunopathology in SAP-deficient mice with chronic LCMV infection mimics human XLP disease. Blood 108:3085–3093

    Article  CAS  PubMed  Google Scholar 

  48. Chen G, Tai AK, Lin M, Chang F, Terhorst C, Huber BT (2005) Signaling lymphocyte activation molecule-associated protein is a negative regulator of the CD8 T cell response in mice. J Immunol 175:2212–2218

    CAS  PubMed  Google Scholar 

  49. Yin L, Al Alem U, Liang J, Tong WM, Li C, Badiali M, Medard JJ, Sumegi J, Wang ZQ, Romeo G (2003) Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypo-gammaglobulinemia. J Med Virol 71:446–455

    Article  CAS  PubMed  Google Scholar 

  50. Graham DB, Bell MP, McCausland MM, Huntoon CJ, van Deursen J, Faubion WA, Crotty S, McKean DJ (2006) Ly9 (CD229)-deficient mice exhibit T cell defects yet do not share several phenotypic characteristics associated with. J Immunol 176:291–300

    CAS  PubMed  Google Scholar 

  51. Howie D, Laroux FS, Morra M, Satoskar AR, Rosas LE, Faubion WA, Julien A, Rietdijk S, Coyle AJ, Fraser C, Terhorst C (2005) Cutting edge: the SLAM family receptor Ly108 controls T cell and neutrophil functions. J Immunol 174:5931–5935

    CAS  PubMed  Google Scholar 

  52. Wang N, Satoskar A, Faubion W, Howie D, Okamoto S, Feske S, Gullo C, Clarke K, Sosa MR, Sharpe AH, Terhorst C (2004) The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med 199:1255–1264

    Article  CAS  PubMed  Google Scholar 

  53. Chen G, Tai AK, Lin M, Chang F, Terhorst C, Huber BT (2007) Increased proliferation of CD8+ T cells in SAP-deficient mice is associated with impaired activation-induced cell death. Eur J Immunol 37:663–674

    Article  CAS  PubMed  Google Scholar 

  54. Nagy N, Matskova L, Kis LL, Hellman U, Klein G, Klein E (2009) The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease. Proc Natl Acad Sci USA 106:11966–11971

    Article  CAS  PubMed  Google Scholar 

  55. Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, van Hoff J, Dhar D, Nichols KE, Filipovich AH, Su HC, Bleesing JJ, Lenardo MJ (2009) Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 119:2976–2989

    CAS  PubMed  Google Scholar 

  56. Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R (2003) SAP is required for generating long-term humoral immunity. Nature 421:282–287

    Article  CAS  PubMed  Google Scholar 

  57. Morra M, Barrington RA, Abadia-Molina AC, Okamoto S, Julien A, Gullo C, Kalsy A, Edwards MJ, Chen G, Spolski R, Leonard WJ, Huber BT, Borrow P, Biron CA, Satoskar AR, Carroll MC, Terhorst C (2005) Defective B cell responses in the absence of SH2D1A. Proc Natl Acad Sci USA 102:4819–4823

    Article  CAS  PubMed  Google Scholar 

  58. Cannons JL, Yu LJ, Jankovic D, Crotty S, Horai R, Kirby M, Anderson S, Cheever AW, Sher A, Schwartzberg PL (2006) SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J Exp Med 203:1551–1565

    Article  CAS  PubMed  Google Scholar 

  59. Hron JD, Caplan L, Gerth AJ, Schwartzberg PL, Peng SL (2004) SH2D1A regulates T-dependent humoral autoimmunity. J Exp Med 200:261–266

    Article  CAS  PubMed  Google Scholar 

  60. Ma CS, Pittaluga S, Avery DT, Hare NJ, Maric I, Klion AD, Nichols KE, Tangye SG (2006) Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Invest 116:322–333

    Article  CAS  PubMed  Google Scholar 

  61. Kamperschroer C, Dibble JP, Meents DL, Schwartzberg PL, Swain SL (2006) SAP is required for Th cell function and for immunity to influenza. J Immunol 177:5317–5327

    CAS  PubMed  Google Scholar 

  62. Ma CS, Hare NJ, Nichols KE, Dupre L, Andolfi G, Roncarolo MG, Adelstein S, Hodgkin PD, Tangye SG (2005) Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest 115:1049–1059

    CAS  PubMed  Google Scholar 

  63. Malbran A, Belmonte L, Ruibal-Ares B, Bare P, Massud I, Parodi C, Felippo M, Hodinka R, Haines K, Nichols KE, de Bracco MM (2004) Loss of circulating CD27+ memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection. Blood 103:1625–1631

    Article  CAS  PubMed  Google Scholar 

  64. Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN (2008) SAP-controlled T–B cell interactions underlie germinal centre formation. Nature 455:764–769

    Article  CAS  PubMed  Google Scholar 

  65. Kamperschroer C, Roberts DM, Zhang Y, Weng NP, Swain SL (2008) SAP enables T cells to help B cells by a mechanism distinct from Th cell programming or CD40 ligand regulation. J Immunol 181:3994–4003

    CAS  PubMed  Google Scholar 

  66. Schwartzberg PL, Mueller KL, Qi H, Cannons JL (2009) SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol 9:39–46

    Article  CAS  PubMed  Google Scholar 

  67. McHeyzer-Williams LJ, Pelletier N, Mark L, Fazilleau N, McHeyzer-Williams MG (2009) Follicular helper T cells as cognate regulators of B cell immunity. Curr Opin Immunol 21:266–273

    Article  CAS  PubMed  Google Scholar 

  68. King C, Tangye SG, Mackay CR (2008) T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 26:741–766

    Article  CAS  PubMed  Google Scholar 

  69. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG (2009) Follicular helper T cells: lineage and location. Immunity 30:324–335

    Article  CAS  PubMed  Google Scholar 

  70. Eddahri F, Denanglaire S, Bureau F, Spolski R, Leonard WJ, Leo O, Andris F (2009) Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood 113:2426–2433

    Article  CAS  PubMed  Google Scholar 

  71. Wu C, Nguyen KB, Pien GC, Wang N, Gullo C, Howie D, Sosa MR, Edwards MJ, Borrow P, Satoskar AR, Sharpe AH, Biron CA, Terhorst C (2001) SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat Immunol 2:410–414

    Article  CAS  PubMed  Google Scholar 

  72. Davidson D, Shi X, Zhang S, Wang H, Nemer M, Ono N, Ohno S, Yanagi Y, Veillette A (2004) Genetic evidence linking SAP, the X-linked lymphoproliferative gene product, to Src-related kinase FynT in T(H)2 cytokine regulation. Immunity 21:707–717

    Article  CAS  PubMed  Google Scholar 

  73. McCausland MM, Yusuf I, Tran H, Ono N, Yanagi Y, Crotty S (2007) SAP regulation of follicular helper CD4 T cell development and humoral immunity is independent of SLAM and Fyn kinase. J Immunol 178:817–828

    CAS  PubMed  Google Scholar 

  74. Kronenberg M, Kinjo Y (2009) Innate-like recognition of microbes by invariant natural killer T cells. Curr Opin Immunol 21:391–396

    Article  CAS  PubMed  Google Scholar 

  75. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  76. Godfrey DI, McCluskey J, Rossjohn J (2005) CD1d antigen presentation: treats for NKT cells. Nat Immunol 6:754–756

    Article  CAS  PubMed  Google Scholar 

  77. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388

    CAS  PubMed  Google Scholar 

  78. Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, Zhu M, Iwakura Y, Savage PB, Dekruyff RH, Shore SA, Umetsu DT (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205:385–393

    Article  CAS  PubMed  Google Scholar 

  79. Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R (2005) Cutting edge: signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol 174:3153–3157

    CAS  PubMed  Google Scholar 

  80. Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, Tangye SG, Schwartzberg PL, Koretzky GA, Stein PL (2005) Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11:340–345

    Article  CAS  PubMed  Google Scholar 

  81. Pasquier B, Yin L, Fondaneche MC, Relouzat F, Bloch-Queyrat C, Lambert N, Fischer A, Saint-Basile G, Latour S (2005) Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med 201:695–701

    Article  CAS  PubMed  Google Scholar 

  82. Eberl G, Lowin-Kropf B, MacDonald HR (1999) Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice. J Immunol 163:4091–4094

    CAS  PubMed  Google Scholar 

  83. Gadue P, Morton N, Stein PL (1999) The Src family tyrosine kinase Fyn regulates natural killer T cell development. J Exp Med 190:1189–1196

    Article  CAS  PubMed  Google Scholar 

  84. Nunez-Cruz S, Yeo WC, Rothman J, Ojha P, Bassiri H, Juntilla M, Davidson D, Veillette A, Koretzky GA, Nichols KE (2008) Differential requirement for the SAP–Fyn interaction during NK T cell development and function. J Immunol 181:2311–2320

    CAS  PubMed  Google Scholar 

  85. Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CDId. Nature Immunol 2:971–978

    Article  CAS  Google Scholar 

  86. Zhou D, Mattner J, Cantu C III, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    Article  CAS  PubMed  Google Scholar 

  87. Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H, Ploegh HL, Coyle AJ, Rajewsky K (2004) Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci USA 101:4566–4571

    Article  CAS  PubMed  Google Scholar 

  88. Sivakumar V, Hammond KJ, Howells N, Pfeffer K, Weih F (2003) Differential requirement for Rel/nuclear factor [kappa]B family members in natural killer T cell development. J Exp Med 197:1613–1621

    Article  CAS  PubMed  Google Scholar 

  89. Diana J, Griseri T, Lagaye S, Beaudoin L, Autrusseau E, Gautron AS, Tomkiewicz C, Herbelin A, Barouki R, von Herrath M, Dalod M, Lehuen A (2009) NKT cell-plasmacytoid dendritic cell cooperation via OX40 controls viral infection in a tissue-specific manner. Immunity 30:289–299

    Article  CAS  PubMed  Google Scholar 

  90. Roberts TJ, Lin Y, Spence PM, Van Kaer L, Brutkiewicz RR (2004) CD1d1-dependent control of the magnitude of an acute antiviral immune response. J Immunol 172:3454–3461

    CAS  PubMed  Google Scholar 

  91. Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W, Lijun Z, Chunxian D, Xinti T, Wei X, Lang C, Yanping J, Tao X, Mengjun W, Jie X, Youxin J, Jinquan T (2009) EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res 69:7935

    Article  PubMed  CAS  Google Scholar 

  92. Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348

    Article  CAS  PubMed  Google Scholar 

  93. Terabe M, Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28:491–496

    Article  CAS  PubMed  Google Scholar 

  94. Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, Maione D, Volpini G, Finco O, Nuti S, Tavarini S, Dellabona P, Rappuoli R, Casorati G, Abrignani S (2007) Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA 104:3984–3989

    Article  CAS  PubMed  Google Scholar 

  95. Lang GA, Devera TS, Lang ML (2008) Requirement for CD1d expression by B cells to stimulate NKT cell-enhanced antibody production. Blood 111:2158–2162

    Article  CAS  PubMed  Google Scholar 

  96. Tonti E, Galli G, Malzone C, Abrignani S, Casorati G, Dellabona P (2009) NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood 113:370–376

    Article  CAS  PubMed  Google Scholar 

  97. Cen O, Ueda A, Guzman L, Jain J, Bassiri H, Nichols KE, Stein PL (2009) The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) regulates IFN-gamma and IL-4 production in V alpha 14 transgenic NKT cells via effects on GATA-3 and T-bet expression. J Immunol 182:1370–1378

    CAS  PubMed  Google Scholar 

  98. Bassiri H, Janice Yeo WC, Rothman J, Koretzky GA, Nichols KE (2008) X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses. Immunol Res 42:145–159

    Article  CAS  PubMed  Google Scholar 

  99. Berg LJ (2007) Signalling through TEC kinases regulates conventional versus innate CD8+ T-cell development. Nat Rev Immunol 7:479–485

    Article  CAS  PubMed  Google Scholar 

  100. Prince AL, Yin CC, Enos ME, Felices M, Berg LJ (2009) The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol Rev 228:115–131

    Article  CAS  PubMed  Google Scholar 

  101. Lucas JA, Atherly LO, Berg LJ (2002) The absence of Itk inhibits positive selection without changing lineage commitment. J Immunol 168:6142–6151

    CAS  PubMed  Google Scholar 

  102. Atherly LO, Lucas JA, Felices M, Yin CC, Reiner SL, Berg LJ (2006) The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells. Immunity 25:79–91

    Article  CAS  PubMed  Google Scholar 

  103. Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL (2009) Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev 228:93–114

    Article  CAS  PubMed  Google Scholar 

  104. Dubois S, Waldmann TA, Muller JR (2006) ITK and IL-15 support two distinct subsets of CD8+ T cells. Proc Natl Acad Sci 103:12075–12080

    Article  CAS  PubMed  Google Scholar 

  105. Broussard C, Fleischecker C, Horai R, Chetana M, Venegas AM, Sharp LL, Hedrick SM, Fowlkes BJ, Schwartzberg PL (2006) Altered development of CD8+ T cell lineages in mice deficient for the Tec kinases Itk and Rlk. Immunity 25:93–104

    Article  CAS  PubMed  Google Scholar 

  106. Horai R, Mueller KL, Handon RA, Cannons JL, Anderson SM, Kirby MR, Schwartzberg PL (2007) Requirements for selection of conventional and innate T lymphocyte lineages. Immunity 27:775–785

    Article  CAS  PubMed  Google Scholar 

  107. Li W, Kim MG, Gourley TS, McCarthy BP, Sant’Angelo DB, Chang CH (2005) An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23:375–386

    Article  CAS  PubMed  Google Scholar 

  108. Choi EY, Jung KC, Park HJ, Chung DH, Song JS, Yang SD, Simpson E, Park SH (2005) Thymocyte–thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23:387–396

    Article  CAS  PubMed  Google Scholar 

  109. Hu J, August A (2008) Naive and innate memory phenotype CD4+ T cells have different requirements for active Itk for their development. J Immunol 180:6544–6552

    CAS  PubMed  Google Scholar 

  110. Yan Q, Malashkevich VN, Fedorov A, Fedorov E, Cao E, Lary JW, Cole JL, Nathenson SG, Almo SC (2007) Structure of CD84 provides insight into SLAM family function. Proc Natl Acad Sci USA 104:10583–10588

    Article  CAS  PubMed  Google Scholar 

  111. Concannon P, Rich SS, Nepom GT (2009) Genetics of type 1A diabetes. N Engl J Med 360:1646–1654

    Article  CAS  PubMed  Google Scholar 

  112. Coenen MJ, Gregersen PK (2009) Rheumatoid arthritis: a view of the current genetic landscape. Genes Immun 10:101–111

    Article  CAS  PubMed  Google Scholar 

  113. Zuvich RL, McCauley JL, Pericak-Vance MA, Haines JL (2009) Genetics and pathogenesis of multiple sclerosis. Semin Immunol 21:328–333

    Article  CAS  PubMed  Google Scholar 

  114. Krishnan S, Chowdhury B, Tsokos GC (2006) Autoimmunity in systemic lupus erythematosus: integrating genes and biology. Semin Immunol 18:230–243

    Article  CAS  PubMed  Google Scholar 

  115. Moser KL, Gray-McGuire C, Kelly J, Asundi N, Yu H, Bruner GR, Mange M, Hogue R, Neas BR, Harley JB (1999) Confirmation of genetic linkage between human systemic lupus erythematosus and chromosome 1q41. Arthritis Rheum 42:1902–1907

    Article  CAS  PubMed  Google Scholar 

  116. Shai R, Quismorio FP Jr, Li L, Kwon OJ, Morrison J, Wallace DJ, Neuwelt CM, Brautbar C, Gauderman WJ, Jacob CO (1999) Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 8:639–644

    Article  CAS  PubMed  Google Scholar 

  117. Tsao BP, Cantor RM, Grossman JM, Kim SK, Strong N, Lau CS, Chen CJ, Shen N, Ginzler EM, Goldstein R, Kalunian KC, Arnett FC, Wallace DJ, Hahn BH (2002) Linkage and interaction of loci on 1q23 and 16q12 may contribute to susceptibility to systemic lupus erythematosus. Arthritis Rheum 46:2928–2936

    Article  CAS  PubMed  Google Scholar 

  118. Tsao BP, Cantor RM, Kalunian KC, Chen CJ, Badsha H, Singh R, Wallace DJ, Kitridou RC, Chen SL, Shen N, Song YW, Isenberg DA, Yu CL, Hahn BH, Rotter JI (1997) Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 99:725–731

    Article  CAS  PubMed  Google Scholar 

  119. Johanneson B, Lima G, von Salome J, Alarcon-Segovia D, Alarcon-Riquelme ME (2002) A major susceptibility locus for systemic lupus erythematosus maps to chromosome 1q31. Am J Hum Genet 71:1060–1071

    Article  CAS  PubMed  Google Scholar 

  120. Gray-McGuire C, Moser KL, Gaffney PM, Kelly J, Yu H, Olson JM, Jedrey CM, Jacobs KB, Kimberly RP, Neas BR, Rich SS, Behrens TW, Harley JB (2000) Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16–15.2. Am J Hum Genet 67:1460–1469

    Article  CAS  PubMed  Google Scholar 

  121. Wakeland EK, Liu K, Graham RR, Behrens TW (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15:397–408

    Article  CAS  PubMed  Google Scholar 

  122. Vyse TJ, Richardson AM, Walsh E, Farwell L, Daly MJ, Terhorst C, Rioux JD (2005) Mapping autoimmune disease genes in humans: lessons from IBD and SLE. Novartis Found Symp 267:94–107

    Article  CAS  PubMed  Google Scholar 

  123. Graham DSC, Vyse TJ, Fortin PR, Montpetit A, Cai Y, Lim S, McKenzie T, Farwell L, Rhodes B, Chad L, Hudson TJ, Sharpe A, Terhorst C, Greenwood CMT, Wither J, Rioux JD (2008) Association of LY9 in UK and Canadian SLE families. Genes Immun 9:93–102

    Article  CAS  Google Scholar 

  124. Sayos J, Martin M, Chen A, Simarro M, Howie D, Morra M, Engel P, Terhorst C (2001) Cell surface receptors Ly-9 and CD84 recruit the X-linked lymphoproliferative disease gene product SAP. Blood 97:3867–3874

    Article  CAS  PubMed  Google Scholar 

  125. Rozzo S, Vyse T, Drake C, Kotzin B (1996) Effect of genetic background on the contribution of New Zealand Black loci to autoimmune lupus nephritis. Proc Natl Acad Sci 93:15164–15168

    Article  CAS  PubMed  Google Scholar 

  126. Kono DH, Burlingame RW, Owens DG, Kuramochi A, Balderas RS, Balomenos D, Theofilopoulos AN (1994) Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci 91:10168–10172

    Article  CAS  PubMed  Google Scholar 

  127. Hogarth MB, Slingsby JH, Allen PJ, Thompson EM, Chandler P, Davies KA, Simpson E, Morley BJ, Walport MJ (1998) Multiple lupus susceptibility loci map to chromosome 1 in BXSB mice. J Immunol 161:2753–2761

    CAS  PubMed  Google Scholar 

  128. Morel L, Blenman KR, Croker BP, Wakeland EK (2001) The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci 98:1787–1792

    Article  CAS  PubMed  Google Scholar 

  129. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH, Yim YS, Pertsemlidis A, Garner HR Jr, Morel L, Wakeland EK (2004) Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21:769–780

    Article  CAS  PubMed  Google Scholar 

  130. Chen YF, Perry D, Boackle SA, Sobel ES, Molina H, Croker BP, Morel L (2005) Several genes contribute to the production of autoreactive B and T cells in the murine lupus susceptibility locus Sle1c. J Immunol 175:1080–1089

    CAS  PubMed  Google Scholar 

  131. Chen YF, Cuda C, Morel L (2005) Genetic determination of T cell help in loss of tolerance to nuclear antigens. J Immunol 174:7692–7702

    CAS  PubMed  Google Scholar 

  132. Croker BP, Gilkeson G, Morel L (2003) Genetic interactions between susceptibility loci reveal epistatic pathogenic networks in murine lupus. Genes Immun 4:575–585

    Article  CAS  PubMed  Google Scholar 

  133. Bygrave AE, Rose KL, Cortes-Hernandez J, Warren J, Rigby RJ, Cook HT, Walport MJ, Vyse TJ, Botto M (2004) Spontaneous autoimmunity in 129 and C57BL/6 mice—implications for autoimmunity described in gene-targeted mice. PLoS Biol 2:E243

    Article  PubMed  CAS  Google Scholar 

  134. Carlucci F, Cortes-Hernandez J, Fossati-Jimack L, Bygrave AE, Walport MJ, Vyse TJ, Cook HT, Botto M (2007) Genetic dissection of spontaneous autoimmunity driven by 129-derived chromosome 1 Loci when expressed on C57BL/6 mice. J Immunol 178:2352–2360

    CAS  PubMed  Google Scholar 

  135. Chen YF, Morel L (2005) Genetics of T cell defects in lupus. Cell Mol Immunol 2:403–409

    CAS  PubMed  Google Scholar 

  136. Kaminski DA, Stavnezer J (2007) Antibody class switching differs among SJL, C57BL/6 and 129 mice. Int Immunol 19:545–556

    Article  CAS  PubMed  Google Scholar 

  137. Corcoran LM, Metcalf D (1999) IL-5 and Rp105 signaling defects in B cells from commonly used 129 mouse substrains. J Immunol 163:5836–5842

    CAS  PubMed  Google Scholar 

  138. McVicar DW, Winkler-Pickett R, Taylor LS, Makrigiannis A, Bennett M, Anderson SK, Ortaldo JR (2002) Aberrant DAP12 signaling in the 129 strain of mice: implications for the analysis of gene-targeted mice. J Immunol 169:1721–1728

    CAS  PubMed  Google Scholar 

  139. O’Neill SM, Brady MT, Callanan JJ, Mulcahy G, Joyce P, Mills KH, Dalton JP (2000) Fasciola hepatica infection downregulates Th1 responses in mice. Parasite Immunol 22:147–155

    Article  PubMed  Google Scholar 

  140. Mo XY, Sangster M, Sarawar S, Coleclough C, Doherty PC (1995) Differential antigen burden modulates the gamma interferon but not the immunoglobulin response in mice that vary in susceptibility to Sendai virus pneumonia. J Virol 69:5592–5598

    CAS  PubMed  Google Scholar 

  141. Fritz RB, Zhao ML (1996) Active and passive experimental autoimmune encephalomyelitis in strain 129/J (H-2b) mice. J Neurosci Res 45:471–474

    Article  CAS  PubMed  Google Scholar 

  142. Mittleman BB, Morse HC III, Payne SM, Shearer GM, Mozes E (1996) Amelioration of experimental systemic lupus erythematosus (SLE) by retrovirus infection. J Clin Immunol 16:230–236

    Article  CAS  PubMed  Google Scholar 

  143. Morel L, Blenman KR, Croker BP, Wakeland EK (2001) The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA 98:1787–1792

    Article  CAS  PubMed  Google Scholar 

  144. Xie C, Patel R, Wu T, Zhu J, Henry T, Bhaskarabhatla M, Samudrala R, Tus K, Gong Y, Zhou H, Wakeland EK, Zhou XJ, Mohan C (2007) PI3K/AKT/mTOR hypersignaling in autoimmune lymphoproliferative disease engendered by the epistatic interplay of Sle1b and FASlpr. Int Immunol 19:509–522

    Article  CAS  PubMed  Google Scholar 

  145. Kumar KR, Li L, Yan M, Bhaskarabhatla M, Mobley AB, Nguyen C, Mooney JM, Schatzle JD, Wakeland EK, Mohan C (2006) Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312:1665–1669

    Article  CAS  PubMed  Google Scholar 

  146. Jennings P, Chan A, Schwartzberg P, Wakeland EK, Yuan D (2008) Antigen-specific responses and ANA production in B6.Sle1b mice: a role for SAP. J Autoimmun 31:345–353

    Article  CAS  PubMed  Google Scholar 

  147. Komori H, Furukawa H, Mori S, Ito MR, Terada M, Zhang MC, Ishii N, Sakuma N, Nose M, Ono M (2006) A signal adaptor SLAM-associated protein regulates spontaneous autoimmunity and Fas-dependent lymphoproliferation in MRL-Faslpr lupus mice. J Immunol 176:395–400

    CAS  PubMed  Google Scholar 

  148. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, Schwartzberg PL, Cook MC, Walters GD, Vinuesa CG (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206:561–576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the NIH (AI-15066, AI-076210, AI-065687 to CT) and the CCFA (to XR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cynthia Detre or Cox Terhorst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detre, C., Keszei, M., Romero, X. et al. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol 32, 157–171 (2010). https://doi.org/10.1007/s00281-009-0193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0193-0

Keywords

Navigation