Skip to main content

Advertisement

Log in

Cytokine network and T cell immunity in atherosclerosis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease of the arterial wall where both innate and adaptive immune responses contribute to disease initiation and progression. Recent studies established that subtypes of T cells, regulatory T cells (Tregs), actively involved in the maintenance of immunological tolerance, inhibit the development and progression of atherosclerosis. Here, we review the current knowledge on the Treg response and the major cytokines involved in its modulation in the context of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonow RO (2002) Primary prevention of cardiovascular disease: a call to action. Circulation 106(25):3140–3141. doi:10.1161/01.CIR.0000048067.86569.E1

    Article  PubMed  Google Scholar 

  2. Lopez AD, Murray CC (1998) The global burden of disease, 1990–2020. Nat Med 4(11):1241–1243. doi:10.1038/3218

    Article  CAS  PubMed  Google Scholar 

  3. Skalen K, Gustafsson M, Rydberg EK et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890):750–754. doi:10.1038/nature00804

    Article  CAS  PubMed  Google Scholar 

  4. Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L (2001) Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med 194(2):205–218. doi:10.1084/jem.194.2.205

    Article  CAS  PubMed  Google Scholar 

  5. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695. doi:10.1056/NEJMra043430

    Article  CAS  PubMed  Google Scholar 

  6. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86(2):515–581. doi:10.1152/physrev.00024.2005

    Article  CAS  PubMed  Google Scholar 

  7. Binder CJ, Chang MK, Shaw PX et al (2002) Innate and acquired immunity in atherogenesis. Nat Med 8(11):1218–1226. doi:10.1038/nm1102-1218

    Article  CAS  PubMed  Google Scholar 

  8. Dansky HM, Charlton SA, Harper MM, Smith JD (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 94(9):4642–4646. doi:10.1073/pnas.94.9.4642

    Article  CAS  PubMed  Google Scholar 

  9. Daugherty A, Pure E, Delfel-Butteiger D et al (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest 100(6):1575–1580. doi:10.1172/JCI119681

    Article  CAS  PubMed  Google Scholar 

  10. Zhou X, Nicoletti A, Elhage R, Hansson GK (2000) Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102(24):2919–2922

    CAS  PubMed  Google Scholar 

  11. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. doi:10.1146/annurev.immunol.18.1.767

    Article  CAS  PubMed  Google Scholar 

  12. Maldonado-Lopez R, De Smedt T, Michel P et al (1999) CD8alpha+ and CD8alpha subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189(3):587–592. doi:10.1084/jem.189.3.587

    Article  CAS  PubMed  Google Scholar 

  13. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394(6689):200–203. doi:10.1038/28204

    Article  CAS  PubMed  Google Scholar 

  14. de Nooijer R, von der Thusen JH, Verkleij CJ et al (2004) Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler Thromb Vasc Biol 24(12):2313–2319. doi:10.1161/01.ATV.0000147126.99529.0a

    Article  PubMed  CAS  Google Scholar 

  15. Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH (2005) T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A 102(5):1596–1601. doi:10.1073/pnas.0409015102

    Article  CAS  PubMed  Google Scholar 

  16. Mallat Z, Corbaz A, Scoazec A et al (2001) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 89(7):E41–E45. doi:10.1161/hh1901.098735

    Article  CAS  PubMed  Google Scholar 

  17. Schonbeck U, Sukhova GK, Shimizu K, Mach F, Libby P (2000) Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A 97(13):7458–7463. doi:10.1073/pnas.97.13.7458

    Article  CAS  PubMed  Google Scholar 

  18. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi:10.1038/32588

    Article  CAS  PubMed  Google Scholar 

  19. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669. doi:10.1016/S0092-8674(00)80702-3

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Paulsson G, Stemme S, Hansson GK (1998) Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 101(8):1717–1725. doi:10.1172/JCI1216

    Article  CAS  PubMed  Google Scholar 

  21. Caligiuri G, Nicoletti A, Poirier B, Hansson GK (2002) Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 109(6):745–753

    CAS  PubMed  Google Scholar 

  22. Palinski W, Miller E, Witztum JL (1995) Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A 92(3):821–825. doi:10.1073/pnas.92.3.821

    Article  CAS  PubMed  Google Scholar 

  23. Freigang S, Horkko S, Miller E, Witztum JL, Palinski W (1998) Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 18(12):1972–1982

    CAS  PubMed  Google Scholar 

  24. George J, Afek A, Gilburd B et al (1998) Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138(1):147–152. doi:10.1016/S0021-9150(98)00015-X

    Article  CAS  PubMed  Google Scholar 

  25. Binder CJ, Hartvigsen K, Chang MK et al (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114(3):427–437

    CAS  PubMed  Google Scholar 

  26. Binder CJ, Shaw PX, Chang MK et al (2005) The role of natural antibodies in atherogenesis. J Lipid Res 46(7):1353–1363. doi:10.1194/jlr.R500005-JLR200

    Article  CAS  PubMed  Google Scholar 

  27. Pinderski LJ, Fischbein MP, Subbanagounder G et al (2002) Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ Res 90(10):1064–1071. doi:10.1161/01.RES.0000018941.10726.FA

    Article  CAS  PubMed  Google Scholar 

  28. Huber SA, Sakkinen P, David C, Newell MK, Tracy RP (2001) T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 103(21):2610–2616

    CAS  PubMed  Google Scholar 

  29. King VL, Szilvassy SJ, Daugherty A (2002) Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler Thromb Vasc Biol 22(3):456–461. doi:10.1161/hq0302.104905

    Article  CAS  PubMed  Google Scholar 

  30. Davenport P, Tipping PG (2003) The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 163(3):1117–1125

    CAS  PubMed  Google Scholar 

  31. Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132. doi:10.1038/ni1254

    Article  CAS  PubMed  Google Scholar 

  32. Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141. doi:10.1038/ni1261

    Article  CAS  PubMed  Google Scholar 

  33. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238. doi:10.1038/nature04753

    Article  CAS  PubMed  Google Scholar 

  34. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189. doi:10.1016/j.immuni.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  35. Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8(9):967–974. doi:10.1038/ni1488

    Article  CAS  PubMed  Google Scholar 

  36. Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448(7152):480–483. doi:10.1038/nature05969

    Article  CAS  PubMed  Google Scholar 

  37. Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H) 17 cells. Nature 448(7152):484–487. doi:10.1038/nature05970

    Article  CAS  PubMed  Google Scholar 

  38. Song L, Schindler C (2004) IL-6 and the acute phase response in murine atherosclerosis. Atherosclerosis 177(1):43–51. doi:10.1016/j.atherosclerosis.2004.06.018

    Article  CAS  PubMed  Google Scholar 

  39. Ait-Oufella H, Salomon BL, Potteaux S et al (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12(2):178–180. doi:10.1038/nm1343

    Article  CAS  PubMed  Google Scholar 

  40. Mallat Z, Ait-Oufella H, Tedgui A (2007) Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc Med 17(4):113–118. doi:10.1016/j.tcm.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  41. Stephens GL, Shevach EM (2007) Foxp3+ regulatory T cells: selfishness under scrutiny. Immunity 27(3):417–419. doi:10.1016/j.immuni.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  42. Fisson S, Darrasse-Jeze G, Litvinova E et al (2003) Continuous activation of autoreactive CD4+CD25+ regulatory T cells in the steady state. J Exp Med 198(5):737–746. doi:10.1084/jem.20030686

    Article  CAS  PubMed  Google Scholar 

  43. Akbar AN, Vukmanovic-Stejic M, Taams LS, Macallan DC (2007) The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7(3):231–237. doi:10.1038/nri2037

    Article  CAS  PubMed  Google Scholar 

  44. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22(3):329–341. doi:10.1016/j.immuni.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  45. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336. doi:10.1038/ni904

    Article  CAS  PubMed  Google Scholar 

  46. Lin W, Haribhai D, Relland LM et al (2007) Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8(4):359–368. doi:10.1038/ni1445

    Article  CAS  PubMed  Google Scholar 

  47. Wu Y, Borde M, Heissmeyer V et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126(2):375–387. doi:10.1016/j.cell.2006.05.042

    Article  CAS  PubMed  Google Scholar 

  48. Ono M, Yaguchi H, Ohkura N et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446(7136):685–689. doi:10.1038/nature05673

    Article  CAS  PubMed  Google Scholar 

  49. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi:10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  50. Williams LM, Rudensky AY (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8(3):277–284. doi:10.1038/ni1437

    Article  CAS  PubMed  Google Scholar 

  51. Marson A, Kretschmer K, Frampton GM et al (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445(7130):931–935. doi:10.1038/nature05478

    Article  CAS  PubMed  Google Scholar 

  52. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445(7130):936–940. doi:10.1038/nature05563

    Article  CAS  PubMed  Google Scholar 

  53. Paust S, Lu L, McCarty N, Cantor H (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci U S A 101(28):10398–10403. doi:10.1073/pnas.0403342101

    Article  CAS  PubMed  Google Scholar 

  54. Fallarino F, Grohmann U, Hwang KW et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4(12):1206–1212. doi:10.1038/ni1003

    Article  CAS  PubMed  Google Scholar 

  55. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353–1362. doi:10.1038/ni1536

    Article  CAS  PubMed  Google Scholar 

  56. Collison LW, Workman CJ, Kuo TT et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–569. doi:10.1038/nature06306

    Article  CAS  PubMed  Google Scholar 

  57. Kulkarni AB, Karlsson S (1993) Transforming growth factor-beta-1 knockout mice–a mutation in one cytokine gene causes a dramatic inflammatory disease. Am J Pathol 143:3–9

    CAS  PubMed  Google Scholar 

  58. Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699. doi:10.1038/359693a0

    Article  CAS  PubMed  Google Scholar 

  59. Li MO, Sanjabi S, Flavell RA (2006) Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25(3):455–471. doi:10.1016/j.immuni.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  60. Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3):441–454. doi:10.1016/j.immuni.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  61. Cobbold SP, Castejon R, Adams E et al (2004) Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 172(10):6003–6010

    CAS  PubMed  Google Scholar 

  62. Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194(5):629–644. doi:10.1084/jem.194.5.629

    Article  CAS  PubMed  Google Scholar 

  63. Piccirillo CA, Letterio JJ, Thornton AM et al (2002) CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196(2):237–246. doi:10.1084/jem.20020590

    Article  CAS  PubMed  Google Scholar 

  64. Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26(5):579–591. doi:10.1016/j.immuni.2007.03.014

    Article  CAS  PubMed  Google Scholar 

  65. Kullberg MC, Hay V, Cheever AW et al (2005) TGF-beta1 production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur J Immunol 35(10):2886–2895. doi:10.1002/eji.200526106

    Article  CAS  PubMed  Google Scholar 

  66. Fahlen L, Read S, Gorelik L et al (2005) T cells that cannot respond to TGF-beta escape control by CD4+CD25+ regulatory T cells. J Exp Med 201(5):737–746. doi:10.1084/jem.20040685

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura K, Kitani A, Fuss I et al (2004) TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172(2):834–842

    CAS  PubMed  Google Scholar 

  68. Carrier Y, Yuan J, Kuchroo VK, Weiner HL (2007) Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol 178(1):179–185

    CAS  PubMed  Google Scholar 

  69. Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA (2005) Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115(7):1923–1933. doi:10.1172/JCI24487

    Article  CAS  PubMed  Google Scholar 

  70. Apostolou I, von Boehmer H (2004) In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199(10):1401–1408. doi:10.1084/jem.20040249

    Article  CAS  PubMed  Google Scholar 

  71. Belkaid Y (2007) Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 7(11):875–888. doi:10.1038/nri2189

    Article  CAS  PubMed  Google Scholar 

  72. Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317(5835):256–260. doi:10.1126/science.1145697

    Article  CAS  PubMed  Google Scholar 

  73. Sun CM, Hall JA, Blank RB et al (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785. doi:10.1084/jem.20070602

    Article  CAS  PubMed  Google Scholar 

  74. Lacy-Hulbert A, Smith AM, Tissire H et al (2007) Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci U S A 104(40):15823–15828. doi:10.1073/pnas.0707421104

    Article  CAS  PubMed  Google Scholar 

  75. Travis MA, Reizis B, Melton AC et al (2007) Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449(7160):361–365. doi:10.1038/nature06110

    Article  CAS  PubMed  Google Scholar 

  76. McGeachy MJ, Bak-Jensen KS, Chen Y et al (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8(12):1390–1397. doi:10.1038/ni1539

    Article  CAS  PubMed  Google Scholar 

  77. Mallat Z, Gojova A, Marchiol-Fournigault C et al (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89(10):930–934. doi:10.1161/hh2201.099415

    Article  CAS  PubMed  Google Scholar 

  78. Lutgens E, Gijbels M, Smook M et al (2002) Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 22(6):975–982. doi:10.1161/01.ATV.0000019729.39500.2F

    Article  CAS  PubMed  Google Scholar 

  79. Grainger DJ, Mosedale DE, Metcalfe JC, Bottinger EP (2000) Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J Cell Sci 113(Pt 13):2355–2361

    CAS  PubMed  Google Scholar 

  80. Gojova A, Brun V, Esposito B et al (2003) Specific abrogation of transforming growth factor-beta signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood 102:4052–4058

    Article  CAS  PubMed  Google Scholar 

  81. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 112(9):1342–1350

    CAS  PubMed  Google Scholar 

  82. Mor A, Planer D, Luboshits G et al (2007) Role of naturally occurring CD4+CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 27(4):893–900. doi:10.1161/01.ATV.0000259365.31469.89

    Article  CAS  PubMed  Google Scholar 

  83. Davidson NJ, Leach MW, Fort MM et al (1996) T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med 184(1):241–251. doi:10.1084/jem.184.1.241

    Article  CAS  PubMed  Google Scholar 

  84. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190(7):995–1004. doi:10.1084/jem.190.7.995

    Article  CAS  PubMed  Google Scholar 

  85. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617. doi:10.1016/S1074-7613(03)00113-4

    Article  CAS  PubMed  Google Scholar 

  86. Maynard CL, Harrington LE, Janowski KM et al (2007) Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nat Immunol 8(9):931–941. doi:10.1038/ni1504

    Article  CAS  PubMed  Google Scholar 

  87. Stumhofer JS, Silver JS, Laurence A et al (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8(12):1363–1371. doi:10.1038/ni1537

    Article  CAS  PubMed  Google Scholar 

  88. Mallat Z, Besnard S, Duriez M et al (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85(8):e17–e24

    CAS  PubMed  Google Scholar 

  89. Pinderski Oslund LJ, Hedrick CC, Olvera T et al (1999) Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 19(12):2847–2853 in process citation

    CAS  PubMed  Google Scholar 

  90. Caligiuri G, Rudling M, Ollivier V et al (2003) Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 9(1–2):10–17

    CAS  PubMed  Google Scholar 

  91. Potteaux S, Esposito B, Van Oostrom O et al (2004) Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 24:1474–1478

    Article  CAS  PubMed  Google Scholar 

  92. Von Der Thusen JH, Kuiper J, Fekkes ML, De Vos P, Van Berkel TJ, Biessen EA (2001) Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr−/− mice. FASEB J 15(14):2730–2732

    Google Scholar 

  93. Hagenbaugh A, Sharma S, Dubinett SM et al (1997) Altered immune responses in interleukin 10 transgenic mice. J Exp Med 185(12):2101–2110. doi:10.1084/jem.185.12.2101

    Article  CAS  PubMed  Google Scholar 

  94. Mallat Z, Gojova A, Brun V et al (2003) Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108(10):1232–1237. doi:10.1161/01.CIR.0000089083.61317.A1

    Article  CAS  PubMed  Google Scholar 

  95. Ait-Oufella H, Horvat B, Kerdiles Y et al (2007) Measles virus nucleoprotein induces a regulatory immune response and reduces atherosclerosis in mice. Circulation 116(15):1707–1713. doi:10.1161/CIRCULATIONAHA.107.699470

    Article  PubMed  Google Scholar 

  96. Gotsman I, Grabie N, Gupta R et al (2006) Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114(19):2047–2055. doi:10.1161/CIRCULATIONAHA.106.633263

    Article  CAS  PubMed  Google Scholar 

  97. Heller EA, Liu E, Tager AM et al (2006) Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113(19):2301–2312. doi:10.1161/CIRCULATIONAHA.105.605121

    Article  CAS  PubMed  Google Scholar 

  98. Mor A, Luboshits G, Planer D, Keren G, George J (2006) Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes. Eur Heart J 27(21):2530–2537. doi:10.1093/eurheartj/ehl222

    Article  CAS  PubMed  Google Scholar 

  99. de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, van der Wal AC (2007) Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE 2(1):e779. doi:10.1371/journal.pone.0000779

    Article  PubMed  CAS  Google Scholar 

  100. Han SF, Liu P, Zhang W et al (2007) The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol 124(1):90–97. doi:10.1016/j.clim.2007.03.546

    Article  CAS  PubMed  Google Scholar 

  101. Belghith M, Bluestone JA, Barriot S, Megret J, Bach JF, Chatenoud L (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9(9):1202–1208. doi:10.1038/nm924

    Article  CAS  PubMed  Google Scholar 

  102. Steffens S, Burger F, Pelli G et al (2006) Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation 114(18):1977–1984. doi:10.1161/CIRCULATIONAHA.106.627430

    Article  CAS  PubMed  Google Scholar 

  103. van Puijvelde GH, Hauer AD, de Vos P et al (2006) Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114(18):1968–1976. doi:10.1161/CIRCULATIONAHA.106.615609

    Article  PubMed  CAS  Google Scholar 

  104. van Puijvelde GH, van Es T, van Wanrooij EJ et al (2007) Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 27(12):2677–2683. doi:10.1161/ATVBAHA.107.151274

    Article  PubMed  CAS  Google Scholar 

  105. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394(6696):897–901. doi:10.1038/29795

    Article  CAS  PubMed  Google Scholar 

  106. Siegmund B, Sennello JA, Jones-Carson J et al (2004) Leptin receptor expression on T lymphocytes modulates chronic intestinal inflammation in mice. Gut 53(7):965–972. doi:10.1136/gut.2003.027136

    Article  CAS  PubMed  Google Scholar 

  107. Matarese G, Di Giacomo A, Sanna V et al (2001) Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 166(10):5909–5916

    CAS  PubMed  Google Scholar 

  108. De Rosa V, Procaccini C, La Cava A et al (2006) Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest 116(2):447–455. doi:10.1172/JCI26523

    Article  PubMed  CAS  Google Scholar 

  109. Lee CH, Chen YG, Chen J et al (2006) Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: II. Immunologic analysis. Diabetes 55(1):171–178. doi:10.2337/diabetes.55.01.06.db05-1129

    Article  CAS  PubMed  Google Scholar 

  110. Taleb S, Herbin O, Ait-Oufella H et al (2007) Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler Thromb Vasc Biol 27:2691–2698

    Article  CAS  PubMed  Google Scholar 

  111. De Rosa V, Procaccini C, Cali G et al (2007) A key role of leptin in the control of regulatory T cell proliferation. Immunity 26(2):241–255. doi:10.1016/j.immuni.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  112. Harats D, Yacov N, Gilburd B, Shoenfeld Y, George J (2002) Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 40(7):1333–1338. doi:10.1016/S0735-1097(02)02135-6

    Article  CAS  PubMed  Google Scholar 

  113. Maron R, Sukhova G, Faria AM et al (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106(13):1708–1715. doi:10.1161/01.CIR.0000029750.99462.30

    Article  CAS  PubMed  Google Scholar 

  114. Groux H, O’Garra A, Bigler M et al (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389(6652):737–742. doi:10.1038/39614

    Article  CAS  PubMed  Google Scholar 

  115. Lemarie CA, Esposito B, Tedgui A, Lehoux S (2003) Pressure-induced vascular activation of nuclear factor-kappaB: role in cell survival. Circ Res 93(3):207–212. doi:10.1161/01.RES.0000086942.13523.88

    Article  CAS  PubMed  Google Scholar 

  116. Ait-Oufella H, Kinugawa K, Zoll J et al (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115(16):2168–2177. doi:10.1161/CIRCULATIONAHA.106.662080

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Tedgui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait-Oufella, H., Taleb, S., Mallat, Z. et al. Cytokine network and T cell immunity in atherosclerosis. Semin Immunopathol 31, 23–33 (2009). https://doi.org/10.1007/s00281-009-0143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0143-x

Keywords

Navigation