Skip to main content

Advertisement

Log in

Molecular mechanisms that control mouse and human TCR-αβ and TCR-γδ T cell development

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Following specification of hematopoietic precursor cells into the T cell lineage, several developmental options remain available to the immature thymocytes. The paradigm is that the outcome of the T cell receptor rearrangements and the corresponding T cell receptor signaling events will be predominant to determine the first of these choices: the αβ versus γδ T cell pathways. Here, we review the thymus-derived environmental signals, the transcriptional mediators, and other molecular mechanisms that are also involved in this decision in both the mouse and human. We discuss the differences in cellular events between the αβ and γδ developmental pathways and try to correlate these with a corresponding complexity of the molecular mechanisms that support them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allman D, Sambandam A, Kim S et al (2003) Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 4:168–174 doi:10.1038/ni878

    PubMed  CAS  Google Scholar 

  2. Porritt HE, Rumfelt LL, Tabrizifard S et al (2004) Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:735–745 doi:10.1016/j.immuni.2004.05.004

    PubMed  CAS  Google Scholar 

  3. Bell JJ, Bhandoola A (2008) The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452:764–767 doi:10.1038/nature06840

    PubMed  CAS  Google Scholar 

  4. Wada H, Masuda K, Satoh R et al (2008) Adult T-cell progenitors retain myeloid potential. Nature 452:768–772 doi:10.1038/nature06839

    PubMed  CAS  Google Scholar 

  5. Rothenberg EV, Taghon T (2005) Molecular genetics of T cell development. Annu Rev Immunol 23:601–649 doi:10.1146/annurev.immunol.23.021704.115737

    PubMed  CAS  Google Scholar 

  6. Maillard I, Fang T, Pear WS (2005) Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 23:945–974 doi:10.1146/annurev.immunol.23.021704.115747

    PubMed  CAS  Google Scholar 

  7. Radtke F, Wilson A, Mancini SJ et al (2004) Notch regulation of lymphocyte development and function. Nat Immunol 5:247–253 doi:10.1038/ni1045

    PubMed  CAS  Google Scholar 

  8. Radtke F, Wilson A, Stark G et al (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:547–558 doi:10.1016/S1074-7613(00)80054-0

    PubMed  CAS  Google Scholar 

  9. Wilson A, MacDonald HR, Radtke F (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 194:1003–1012 doi:10.1084/jem.194.7.1003

    PubMed  CAS  Google Scholar 

  10. Sambandam A, Maillard I, Zediak VP et al (2005) Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6:663–670 doi:10.1038/ni1216

    PubMed  CAS  Google Scholar 

  11. Hozumi K, Negishi N, Suzuki D et al (2004) Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 5:638–644 doi:10.1038/ni1075

    PubMed  CAS  Google Scholar 

  12. Schmitt TM, Zuniga-Pflucker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17:749–756 doi:10.1016/S1074-7613(02)00474-0

    PubMed  CAS  Google Scholar 

  13. Besseyrias V, Fiorini E, Strobl LJ et al (2007) Hierarchy of Notch–Delta interactions promoting T cell lineage commitment and maturation. J Exp Med 204:331–343 doi:10.1084/jem.20061442

    PubMed  Google Scholar 

  14. Jaleco AC, Neves H, Hooijberg E et al (2001) Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194:991–1002 doi:10.1084/jem.194.7.991

    PubMed  CAS  Google Scholar 

  15. Visan I, Yuan JS, Tan JB et al (2006) Regulation of intrathymic T-cell development by Lunatic Fringe–Notch1 interactions. Immunol Rev 209:76–94 doi:10.1111/j.0105-2896.2006.00360.x

    PubMed  CAS  Google Scholar 

  16. Schmitt TM, Ciofani M, Petrie HT et al (2004) Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 200:469–479 doi:10.1084/jem.20040394

    PubMed  CAS  Google Scholar 

  17. Maeda T, Merghoub T, Hobbs RM et al (2007) Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316:860–866 doi:10.1126/science.1140881

    PubMed  CAS  Google Scholar 

  18. Taghon TN, David ES, Zuniga-Pflucker JC et al (2005) Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 19:965–978 doi:10.1101/gad.1298305

    PubMed  CAS  Google Scholar 

  19. Franco CB, Scripture-Adams DD, Proekt I et al (2006) Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proc Natl Acad Sci USA 103:11993–11998 doi:10.1073/pnas.0601188103

    PubMed  CAS  Google Scholar 

  20. Taghon T, Yui MA, Rothenberg EV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol 8:845–855 doi:10.1038/ni1486

    PubMed  CAS  Google Scholar 

  21. Laiosa CV, Stadtfeld M, Xie H et al (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25:731–744 doi:10.1016/j.immuni.2006.09.011

    PubMed  CAS  Google Scholar 

  22. De Smedt M, Taghon T, Van de Walle I et al (2007) Notch signaling induces cytoplasmic CD3 epsilon expression in human differentiating NK cells. Blood 110:2696–2703 doi:10.1182/blood-2007-03-082206

    PubMed  Google Scholar 

  23. Rothenberg EV, Moore JE, Yui MA (2008) Launching the T-cell-lineage developmental programme. Nat Rev Immunol 8:9–21 doi:10.1038/nri2232

    PubMed  CAS  Google Scholar 

  24. Chen CH, Sowder JT, Lahti JM et al (1989) TCR3: a third T-cell receptor in the chicken. Proc Natl Acad Sci U S A 86:2351–2355 doi:10.1073/pnas.86.7.2351

    PubMed  CAS  Google Scholar 

  25. Six A, Rast JP, McCormack WT et al (1996) Characterization of avian T-cell receptor gamma genes. Proc Natl Acad Sci U S A 93:15329–15334 doi:10.1073/pnas.93.26.15329

    PubMed  CAS  Google Scholar 

  26. Gobel TW, Chen CL, Lahti J et al (1994) Identification of T-cell receptor alpha-chain genes in the chicken. Proc Natl Acad Sci USA 91:1094–1098 doi:10.1073/pnas.91.3.1094

    PubMed  CAS  Google Scholar 

  27. Rast JP, Anderson MK, Strong SJ et al (1997) alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6:1–11 doi:10.1016/S1074-7613(00)80237-X

    PubMed  CAS  Google Scholar 

  28. Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17:109–147 doi:10.1146/annurev.immunol.17.1.109

    PubMed  CAS  Google Scholar 

  29. Anderson MK, Pant R, Miracle AL et al (2004) Evolutionary origins of lymphocytes: ensembles of T cell and B cell transcriptional regulators in a cartilaginous fish. J Immunol 172:5851–5860

    PubMed  CAS  Google Scholar 

  30. Miracle AL, Anderson MK, Litman RT et al (2001) Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 13:567–580 doi:10.1093/intimm/13.4.567

    PubMed  CAS  Google Scholar 

  31. Cunningham CP, Kimpton WG, Fernando A et al (2001) Neonatal thymectomy identifies two major pools of sessile and recirculating peripheral T cells which appear to be under separate homeostatic control. Int Immunol 13:1351–1359 doi:10.1093/intimm/13.11.1351

    PubMed  CAS  Google Scholar 

  32. Hein WR, Mackay CR (1991) Prominence of gamma delta T cells in the ruminant immune system. Immunol Today 12:30–34 doi:10.1016/0167-5699(91)90109-7

    PubMed  CAS  Google Scholar 

  33. Pollock JM, Welsh MD (2002) The WC1(+) gammadelta T-cell population in cattle: a possible role in resistance to intracellular infection. Vet Immunol Immunopathol 89:105–114 doi:10.1016/S0165-2427(02)00200-3

    PubMed  CAS  Google Scholar 

  34. Masuda K, Kakugawa K, Nakayama T et al (2007) T cell lineage determination precedes the initiation of TCR beta gene rearrangement. J Immunol 179:3699–3706

    PubMed  CAS  Google Scholar 

  35. Wilson A, Held W, MacDonald HR (1994) Two waves of recombinase gene expression in developing thymocytes. J Exp Med 179:1355–1360 doi:10.1084/jem.179.4.1355

    PubMed  CAS  Google Scholar 

  36. Ciofani M, Knowles GC, Wiest DL et al (2006) Stage-specific and differential notch dependency at the alphabeta and gammadelta T lineage bifurcation. Immunity 25:105–116 doi:10.1016/j.immuni.2006.05.010

    PubMed  CAS  Google Scholar 

  37. Kang J, Volkmann A, Raulet DH (2001) Evidence that gammadelta versus alphabeta T cell fate determination is initiated independently of T cell receptor signaling. J Exp Med 193:689–698 doi:10.1084/jem.193.6.689

    PubMed  CAS  Google Scholar 

  38. Prinz I, Sansoni A, Kissenpfennig A et al (2006) Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat Immunol 7:995–1003 doi:10.1038/ni1371

    PubMed  CAS  Google Scholar 

  39. Bonneville M, Ishida I, Mombaerts P et al (1989) Blockage of alpha beta T-cell development by TCR gamma delta transgenes. Nature 342:931–934 doi:10.1038/342931a0

    PubMed  CAS  Google Scholar 

  40. von Boehmer H, Bonneville M, Ishida I et al (1988) Early expression of a T-cell receptor beta-chain transgene suppresses rearrangement of the V gamma 4 gene segment. Proc Natl Acad Sci U S A 85:9729–9732 doi:10.1073/pnas.85.24.9729

    Google Scholar 

  41. Ferrero I, Mancini SJ, Grosjean F et al (2006) TCRgamma silencing during alphabeta T cell development depends upon pre-TCR-induced proliferation. J Immunol 177:6038–6043

    PubMed  CAS  Google Scholar 

  42. Ishida I, Verbeek S, Bonneville M et al (1990) T-cell receptor gamma delta and gamma transgenic mice suggest a role of a gamma gene silencer in the generation of alpha beta T cells. Proc Natl Acad Sci U S A 87:3067–3071 doi:10.1073/pnas.87.8.3067

    PubMed  CAS  Google Scholar 

  43. Chien YH, Iwashima M, Kaplan KB et al (1987) A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327:677–682 doi:10.1038/327677a0

    PubMed  CAS  Google Scholar 

  44. Wilson A, MacDonald HR (1998) A limited role for beta-selection during gamma delta T cell development. J Immunol 161:5851–5854

    PubMed  CAS  Google Scholar 

  45. Aifantis I, Azogui O, Feinberg J et al (1998) On the role of the pre-T cell receptor in alphabeta versus gammadelta T lineage commitment. Immunity 9:649–655 doi:10.1016/S1074-7613(00)80662-7

    PubMed  CAS  Google Scholar 

  46. Hao QL, George AA, Zhu J et al (2008) Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7neg lympho-myeloid thymic progenitors. Blood 111:1318–1326

    PubMed  CAS  Google Scholar 

  47. Six EM, Bonhomme D, Monteiro M et al (2007) A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med 204:3085–3093 doi:10.1084/jem.20071003

    PubMed  CAS  Google Scholar 

  48. Haddad R, Guimiot F, Six E et al (2006) Dynamics of thymus-colonizing cells during human development. Immunity 24:217–230 doi:10.1016/j.immuni.2006.01.008

    PubMed  CAS  Google Scholar 

  49. Dik WA, Pike-Overzet K, Weerkamp F et al (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 201:1715–1723 doi:10.1084/jem.20042524

    PubMed  CAS  Google Scholar 

  50. Carrasco YR, Trigueros C, Ramiro AR et al (1999) Beta-selection is associated with the onset of CD8beta chain expression on CD4(+)CD8alphaalpha(+) pre-T cells during human intrathymic development. Blood 94:3491–3498

    PubMed  CAS  Google Scholar 

  51. Joachims ML, Chain JL, Hooker SW et al (2006) Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential—differences between men and mice. J Immunol 176:1543–1552

    PubMed  CAS  Google Scholar 

  52. Offner F, Van Beneden K, Debacker V et al (1997) Phenotypic and functional maturation of TCR gammadelta cells in the human thymus. J Immunol 158:4634–4641

    PubMed  CAS  Google Scholar 

  53. Saint-Ruf C, Panigada M, Azogui O et al (2000) Different initiation of pre-TCR and gammadeltaTCR signalling. Nature 406:524–527 doi:10.1038/35020093

    PubMed  CAS  Google Scholar 

  54. Aifantis I, Borowski C, Gounari F et al (2002) A critical role for the cytoplasmic tail of pTalpha in T lymphocyte development. Nat Immunol 3:483–488

    PubMed  CAS  Google Scholar 

  55. Hayes SM, Li L, Love PE (2005) TCR signal strength influences alphabeta/gammadelta lineage fate. Immunity 22:583–593 doi:10.1016/j.immuni.2005.03.014

    PubMed  CAS  Google Scholar 

  56. Haks MC, Lefebvre JM, Lauritsen JP et al (2005) Attenuation of gammadeltaTCR signaling efficiently diverts thymocytes to the alphabeta lineage. Immunity 22:595–606 doi:10.1016/j.immuni.2005.04.003

    PubMed  CAS  Google Scholar 

  57. Kreslavsky T, Garbe AI, Krueger A et al (2008) T cell receptor-instructed {alpha}{beta} versus {gamma}{delta} lineage commitment revealed by single-cell analysis. J Exp Med 205:1173–1186 doi:10.1084/jem.20072425

    PubMed  CAS  Google Scholar 

  58. Lewis JM, Girardi M, Roberts SJ et al (2006) Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal determinant. Nat Immunol 7:843–850 doi:10.1038/ni1363

    PubMed  CAS  Google Scholar 

  59. Terrence K, Pavlovich CP, Matechak EO et al (2000) Premature expression of T cell receptor (TCR)alphabeta suppresses TCRgammadelta gene rearrangement but permits development of gammadelta lineage T cells. J Exp Med 192:537–548 doi:10.1084/jem.192.4.537

    PubMed  CAS  Google Scholar 

  60. Taghon T, Yui MA, Pant R et al (2006) Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity 24:53–64 doi:10.1016/j.immuni.2005.11.012

    PubMed  CAS  Google Scholar 

  61. Carleton M, Haks MC, Smeele SA et al (2002) Early growth response transcription factors are required for development of CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. J Immunol 168:1649–1658

    PubMed  CAS  Google Scholar 

  62. Shao H, Kono DH, Chen LY et al (1997) Induction of the early growth response (Egr) family of transcription factors during thymic selection. J Exp Med 185:731–744 doi:10.1084/jem.185.4.731

    PubMed  CAS  Google Scholar 

  63. Xi H, Kersh GJ (2004) Early growth response gene 3 regulates thymocyte proliferation during the transition from CD4−CD8− to CD4+CD8+. J Immunol 172:964–971

    PubMed  CAS  Google Scholar 

  64. Xi H, Schwartz R, Engel I et al (2006) Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity 24:813–826 doi:10.1016/j.immuni.2006.03.023

    PubMed  CAS  Google Scholar 

  65. Plum J, De Smedt M, Leclercq G et al (1996) Interleukin-7 is a critical growth factor in early human T-cell development. Blood 88:4239–4245

    PubMed  CAS  Google Scholar 

  66. Moore TA, von Freeden-Jeffry U, Murray R et al (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 −/− mice. J Immunol 157:2366–2373

    PubMed  CAS  Google Scholar 

  67. Ye SK, Agata Y, Lee HC et al (2001) The IL-7 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone acetylation. Immunity 15:813–823 doi:10.1016/S1074-7613(01)00230-8

    PubMed  CAS  Google Scholar 

  68. Kang J, DiBenedetto B, Narayan K et al (2004) STAT5 is required for thymopoiesis in a development stage-specific manner. J Immunol 173:2307–2314

    PubMed  CAS  Google Scholar 

  69. Kang J, Coles M, Raulet DH (1999) Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes. J Exp Med 190:973–982 doi:10.1084/jem.190.7.973

    PubMed  CAS  Google Scholar 

  70. Yui MA, Rothenberg EV (2004) Deranged early T cell development in immunodeficient strains of nonobese diabetic mice. J Immunol 173:5381–5391

    PubMed  CAS  Google Scholar 

  71. Huang J, Garrett KP, Pelayo R et al (2005) Propensity of adult lymphoid progenitors to progress to DN2/3 stage thymocytes with Notch receptor ligation. J Immunol 175:4858–4865

    PubMed  CAS  Google Scholar 

  72. Balciunaite G, Ceredig R, Fehling HJ et al (2005) The role of Notch and IL-7 signaling in early thymocyte proliferation and differentiation. Eur J Immunol 35:1292–1300 doi:10.1002/eji.200425822

    PubMed  CAS  Google Scholar 

  73. Wang H, Pierce LJ, Spangrude GJ (2006) Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T-cell differentiation culture system. Exp Hematol 34:1730–1740 doi:10.1016/j.exphem.2006.08.001

    PubMed  CAS  Google Scholar 

  74. Yu Q, Erman B, Park JH et al (2004) IL-7 receptor signals inhibit expression of transcription factors TCF-1, LEF-1, and RORgammat: impact on thymocyte development. J Exp Med 200:797–803 doi:10.1084/jem.20032183

    PubMed  CAS  Google Scholar 

  75. Okamura RM, Sigvardsson M, Galceran J et al (1998) Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20 doi:10.1016/S1074-7613(00)80454-9

    PubMed  CAS  Google Scholar 

  76. Sun Z, Unutmaz D, Zou YR et al (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288:2369–2373 doi:10.1126/science.288.5475.2369

    PubMed  CAS  Google Scholar 

  77. Goux D, Coudert JD, Maurice D et al (2005) Cooperating pre-T-cell receptor and TCF-1-dependent signals ensure thymocyte survival. Blood 106:1726–1733 doi:10.1182/blood-2005-01-0337

    PubMed  CAS  Google Scholar 

  78. Riera-Sans L, Behrens A (2007) Regulation of alphabeta/gammadelta T cell development by the activator protein 1 transcription factor c-Jun. J Immunol 178:5690–5700

    PubMed  CAS  Google Scholar 

  79. Chappaz S, Flueck L, Farr AG et al (2007) Increased TSLP availability restores T- and B-cell compartments in adult IL-7 deficient mice. Blood 110:3862–3870 doi:10.1182/blood-2007-02-074245

    PubMed  CAS  Google Scholar 

  80. Leclercq G, Debacker V, De Smedt M et al (1996) Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J Exp Med 184:325–336 doi:10.1084/jem.184.2.325

    PubMed  CAS  Google Scholar 

  81. De Creus A, Van Beneden K, Stevenaert F et al (2002) Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J Immunol 168:6486–6493

    PubMed  Google Scholar 

  82. Zhao H, Nguyen H, Kang J (2005) Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gamma delta intestinal intraepithelial lymphocytes. Nat Immunol 6:1263–1271 doi:10.1038/ni1267

    PubMed  CAS  Google Scholar 

  83. Ohteki T, Yoshida H, Matsuyama T et al (1998) The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+(NK1+T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187:967–972 doi:10.1084/jem.187.6.967

    PubMed  CAS  Google Scholar 

  84. Melichar H, Kang J (2007) Integrated morphogen signal inputs in gammadelta versus alphabeta T-cell differentiation. Immunol Rev 215:32–45 doi:10.1111/j.1600-065X.2006.00469.x

    PubMed  CAS  Google Scholar 

  85. Washburn T, Schweighoffer E, Gridley T et al (1997) Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88:833–843 doi:10.1016/S0092-8674(00)81929-7

    PubMed  CAS  Google Scholar 

  86. Garbe AI, Krueger A, Gounari F et al (2006) Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. J Exp Med 203:1579–1590 doi:10.1084/jem.20060474

    PubMed  CAS  Google Scholar 

  87. Wolfer A, Wilson A, Nemir M et al (2002) Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. Immunity 16:869–879 doi:10.1016/S1074-7613(02)00330-8

    PubMed  CAS  Google Scholar 

  88. Ciofani M, Zuniga-Pflucker JC (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888 doi:10.1038/ni1234

    PubMed  CAS  Google Scholar 

  89. Juntilla MM, Wofford JA, Birnbaum MJ et al (2007) Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA 104:12105–12110 doi:10.1073/pnas.0705285104

    PubMed  CAS  Google Scholar 

  90. Xiong N, Raulet DH (2007) Development and selection of gammadelta T cells. Immunol Rev 215:15–31 doi:10.1111/j.1600-065X.2006.00478.x

    PubMed  CAS  Google Scholar 

  91. Jiang R, Lan Y, Chapman HD et al (1998) Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12:1046–1057 doi:10.1101/gad.12.7.1046

    PubMed  CAS  Google Scholar 

  92. De Smedt M, Hoebeke I, Reynvoet K et al (2005) Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 106:3498–3506 doi:10.1182/blood-2005-02-0496

    PubMed  Google Scholar 

  93. De Smedt M, Reynvoet K, Kerre T et al (2002) Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 169:3021–3029

    PubMed  Google Scholar 

  94. De Smedt M, Hoebeke I, Plum J (2004) Human bone marrow CD34+ progenitor cells mature to T cells on OP9-DL1 stromal cell line without thymus microenvironment. Blood Cells Mol Dis 33:227–232 doi:10.1016/j.bcmd.2004.08.007

    PubMed  Google Scholar 

  95. La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105:1431–1439 doi:10.1182/blood-2004-04-1293

    PubMed  Google Scholar 

  96. Garcia-Peydro M, de Yebenes V, Toribio ML (2003) Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a gammadelta T-cell fate in fetal thymus organ culture. Blood 102:2444–2451 doi:10.1182/blood-2002-10-3261

    PubMed  CAS  Google Scholar 

  97. Pennington DJ, Silva-Santos B, Shires J et al (2003) The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat Immunol 4:991–998 doi:10.1038/ni979

    PubMed  CAS  Google Scholar 

  98. Silva-Santos B, Pennington DJ, Hayday AC (2005) Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 307:925–928 doi:10.1126/science.1103978

    PubMed  CAS  Google Scholar 

  99. Ikawa T, Kawamoto H, Goldrath AW et al (2006) E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 203:1329–1342 doi:10.1084/jem.20060268

    PubMed  CAS  Google Scholar 

  100. Taniuchi I, Osato M, Egawa T et al (2002) Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111:621–633 doi:10.1016/S0092-8674(02)01111-X

    PubMed  CAS  Google Scholar 

  101. David-Fung ES, Yui MA, Morales M et al (2006) Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev 209:212–236 doi:10.1111/j.0105-2896.2006.00355.x

    PubMed  CAS  Google Scholar 

  102. Ichikawa M, Asai T, Saito T et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304 doi:10.1038/nm997

    PubMed  CAS  Google Scholar 

  103. Egawa T, Tillman RE, Naoe Y et al (2007) The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med 204:1945–1957 doi:10.1084/jem.20070133

    PubMed  CAS  Google Scholar 

  104. Woolf E, Brenner O, Goldenberg D et al (2007) Runx3 regulates dendritic epidermal T cell development. Dev Biol 303:703–714 doi:10.1016/j.ydbio.2006.12.005

    PubMed  CAS  Google Scholar 

  105. Melichar HJ, Narayan K, Der SD et al (2007) Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science 315:230–233 doi:10.1126/science.1135344

    PubMed  CAS  Google Scholar 

  106. Tydell CC, David-Fung ES, Moore JE et al (2007) Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. J Immunol 179:421–438

    PubMed  CAS  Google Scholar 

  107. Wakabayashi Y, Watanabe H, Inoue J et al (2003) Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 4:533–539 doi:10.1038/ni927

    PubMed  CAS  Google Scholar 

  108. Inoue J, Kanefuji T, Okazuka K et al (2006) Expression of TCR alpha beta partly rescues developmental arrest and apoptosis of alpha beta T cells in Bcl11b−/− mice. J Immunol 176:5871–5879

    PubMed  CAS  Google Scholar 

  109. Anderson MK, Hernandez-Hoyos G, Diamond RA et al (1999) Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126:3131–3148

    PubMed  CAS  Google Scholar 

  110. Eyquem S, Chemin K, Fasseu M et al (2004) The Ets-1 transcription factor is required for complete pre-T cell receptor function and allelic exclusion at the T cell receptor beta locus. Proc Natl Acad Sci U S A 101:15712–15717 doi:10.1073/pnas.0405546101

    PubMed  CAS  Google Scholar 

  111. Anderson SJ, Miyake S, Loh DY (1989) Transcription from a murine T-cell receptor V beta promoter depends on a conserved decamer motif similar to the cyclic AMP response element. Mol Cell Biol 9:4835–4845

    PubMed  CAS  Google Scholar 

  112. Gottschalk LR, Leiden JM (1990) Identification and functional characterization of the human T-cell receptor beta gene transcriptional enhancer: common nuclear proteins interact with the transcriptional regulatory elements of the T-cell receptor alpha and beta genes. Mol Cell Biol 10:5486–5495

    PubMed  CAS  Google Scholar 

  113. Kienker LJ, Ghosh MR, Tucker PW (1998) Regulatory elements in the promoter of a murine TCRD V gene segment. J Immunol 161:791–804

    PubMed  CAS  Google Scholar 

  114. Abrahamsen H, Baillie G, Ngai J et al (2004) TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 173:4847–4858

    PubMed  CAS  Google Scholar 

  115. Rudolph D, Tafuri A, Gass P et al (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 95:4481–4486 doi:10.1073/pnas.95.8.4481

    PubMed  CAS  Google Scholar 

  116. Eberl G, Littman DR (2004) Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science 305:248–251 doi:10.1126/science.1096472

    PubMed  CAS  Google Scholar 

  117. He YW, Beers C, Deftos ML et al (2000) Down-regulation of the orphan nuclear receptor ROR gamma t is essential for T lymphocyte maturation. J Immunol 164:5668–5674

    PubMed  CAS  Google Scholar 

  118. Xie H, Sadim MS, Sun Z (2005) RORgammat recruits steroid receptor coactivators to ensure thymocyte survival. J Immunol 175:3800–3809

    PubMed  CAS  Google Scholar 

  119. Rothenberg EV, Yui MA (2008) Development of T cells (Chapter 12). In: Paul WE (ed) Fundamental immunology. 6th edn. Lippincott, Williams & Wilkins, New York, pp 376–406

    Google Scholar 

  120. Blom B, Heemskerk MH, Verschuren MC et al (1999) Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors. EMBO J 18:2793–2802 doi:10.1093/emboj/18.10.2793

    PubMed  CAS  Google Scholar 

  121. Heemskerk MH, Blom B, Nolan G et al (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 186:1597–1602 doi:10.1084/jem.186.9.1597

    PubMed  CAS  Google Scholar 

  122. Ikawa T, Fujimoto S, Kawamoto H et al (2001) Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc Natl Acad Sci U S A 98:5164–5169 doi:10.1073/pnas.091537598

    PubMed  CAS  Google Scholar 

  123. Agata Y, Tamaki N, Sakamoto S et al (2007) Regulation of T cell receptor beta gene rearrangements and allelic exclusion by the helix-loop-helix protein, E47. Immunity 27:871–884 doi:10.1016/j.immuni.2007.11.015

    PubMed  CAS  Google Scholar 

  124. Jones ME, Zhuang Y (2007) Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. Immunity 27:860–870 doi:10.1016/j.immuni.2007.10.014

    PubMed  CAS  Google Scholar 

  125. Engel I, Murre C (2004) E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J 23:202–211 doi:10.1038/sj.emboj.7600017

    PubMed  CAS  Google Scholar 

  126. Bain G, Engel I, Robanus Maandag EC et al (1997) E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17:4782–4791

    PubMed  CAS  Google Scholar 

  127. Wojciechowski J, Lai A, Kondo M et al (2007) E2A and HEB are required to block thymocyte proliferation prior to pre-TCR expression. J Immunol 178:5717–5726

    PubMed  CAS  Google Scholar 

  128. Ghosh JK, Romanow WJ, Murre C (2001) Induction of a diverse T cell receptor gamma/delta repertoire by the helix–loop–helix proteins E2A and HEB in nonlymphoid cells. J Exp Med 193:769–776 doi:10.1084/jem.193.6.769

    PubMed  CAS  Google Scholar 

  129. Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ et al (2001) Basic helix–loop–helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 98:2456–2465 doi:10.1182/blood.V98.8.2456

    PubMed  CAS  Google Scholar 

  130. Barndt RJ, Dai M, Zhuang Y (2000) Functions of E2A-HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol Cell Biol 20:6677–6685 doi:10.1128/MCB.20.18.6677-6685.2000

    PubMed  CAS  Google Scholar 

  131. Barndt R, Dai MF, Zhuang Y (1999) A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during alpha beta thymopoiesis. J Immunol 163:3331–3343

    PubMed  CAS  Google Scholar 

  132. Murre C (2005) Helix–loop–helix proteins and lymphocyte development. Nat Immunol 6:1079–1086 doi:10.1038/ni1260

    PubMed  CAS  Google Scholar 

  133. Engel I, Johns C, Bain G et al (2001) Early thymocyte development is regulated by modulation of E2A protein activity. J Exp Med 194:733–745 doi:10.1084/jem.194.6.733

    PubMed  CAS  Google Scholar 

  134. Bain G, Romanow WJ, Albers K et al (1999) Positive and negative regulation of V(D)J recombination by the E2A proteins. J Exp Med 189:289–300 doi:10.1084/jem.189.2.289

    PubMed  CAS  Google Scholar 

  135. Schilham MW, Wilson A, Moerer P et al (1998) Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 161:3984–3991

    PubMed  CAS  Google Scholar 

  136. Verbeek S, Izon D, Hofhuis F et al (1995) An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374:70–74 doi:10.1038/374070a0

    PubMed  CAS  Google Scholar 

  137. Weerkamp F, Baert MR, Naber BA et al (2006) Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci U S A 103:3322–3326 doi:10.1073/pnas.0511299103

    PubMed  CAS  Google Scholar 

  138. Ohteki T, Wilson A, Verbeek S et al (1996) Selectively impaired development of intestinal T cell receptor gamma delta+ cells and liver CD4+NK1+ T cell receptor alpha beta+ cells in T cell factor-1-deficient mice. Eur J Immunol 26:351–355 doi:10.1002/eji.1830260213

    PubMed  CAS  Google Scholar 

  139. Jeannet G, Scheller M, Scarpellino L et al (2008) Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111:142–149 doi:10.1182/blood-2007-07-102558

    PubMed  CAS  Google Scholar 

  140. Ioannidis V, Beermann F, Clevers H et al (2001) The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol 2:691–697 doi:10.1038/90623

    PubMed  CAS  Google Scholar 

  141. Huang J, Durum SK, Muegge K (2001) Cutting edge: histone acetylation and recombination at the TCR gamma locus follows IL-7 induction. J Immunol 167:6073–6077

    PubMed  CAS  Google Scholar 

  142. Lee PP, Fitzpatrick DR, Beard C et al (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15:763–774 doi:10.1016/S1074-7613(01)00227-8

    PubMed  CAS  Google Scholar 

  143. Schwartz YB, Kahn TG, Dellino GI et al (2004) Polycomb silencing mechanisms in Drosophila. Cold Spring Harb Symp Quant Biol 69:301–308 doi:10.1101/sqb.2004.69.301

    PubMed  CAS  Google Scholar 

  144. Gebuhr TC, Kovalev GI, Bultman S et al (2003) The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J Exp Med 198:1937–1949 doi:10.1084/jem.20030714

    PubMed  CAS  Google Scholar 

  145. Miyazaki M, Miyazaki K, Itoi M et al (2008) Thymocyte proliferation induced by pre-T cell receptor signaling is maintained through polycomb gene product Bmi-1-mediated Cdkn2a repression. Immunity 28:231–245 doi:10.1016/j.immuni.2007.12.013

    PubMed  CAS  Google Scholar 

  146. Lagresle C, Gardie B, Eyquem S et al (2002) Transgenic expression of the p16(INK4a) cyclin-dependent kinase inhibitor leads to enhanced apoptosis and differentiation arrest of CD4−CD8− immature thymocytes. J Immunol 168:2325–2331

    PubMed  CAS  Google Scholar 

  147. Neilson JR, Zheng GX, Burge CB et al (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589 doi:10.1101/gad.1522907

    PubMed  CAS  Google Scholar 

  148. Cobb BS, Nesterova TB, Thompson E et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201:1367–1373 doi:10.1084/jem.20050572

    PubMed  CAS  Google Scholar 

  149. Anderson SJ, Lauritsen JP, Hartman MG et al (2007) Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26:759–772 doi:10.1016/j.immuni.2007.04.012

    PubMed  CAS  Google Scholar 

  150. Swainson L, Kinet S, Manel N et al (2005) Glucose transporter 1 expression identifies a population of cycling CD4+CD8+ human thymocytes with high CXCR4-induced chemotaxis. Proc Natl Acad Sci U S A 102:12867–12872 doi:10.1073/pnas.0503603102

    PubMed  CAS  Google Scholar 

  151. Park JH, Mitnacht R, Torres-Nagel N et al (1993) T cell receptor ligation induces interleukin (IL) 2R beta chain expression in rat CD4,8 double positive thymocytes, initiating an IL-2-dependent differentiation pathway of CD8 alpha+/beta− T cells. J Exp Med 177:541–546 doi:10.1084/jem.177.2.541

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the many authors whose work provided important insights into the topic discussed within this manuscript but who could not be cited due to space limitations. TT is a postdoctoral fellow of the Fund for Scientific Research Flanders (FWO) and his work on this topic is supported by a grant from the FWO as well as from its Odysseus Research Program. Related work in the laboratory of EVR was supported by NIH grants CA90233 and CA98925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Taghon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghon, T., Rothenberg, E.V. Molecular mechanisms that control mouse and human TCR-αβ and TCR-γδ T cell development. Semin Immunopathol 30, 383–398 (2008). https://doi.org/10.1007/s00281-008-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-008-0134-3

Keywords

Navigation