Skip to main content

Advertisement

Log in

Nox enzymes in immune cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase of phagocytes is a multi-component electron transferase that uses cytoplasmic NADPH to convert molecular oxygen to superoxide anion, consequently delivering reactive oxygen species to the site of invading microorganisms. Together with soluble factors and other phagocyte-derived agents, the resultant toxic species kill and degrade the ingested microbe. Flavocytochrome b 558, a heterodimeric protein composed of gp91phox and p22phox, is the membrane component of the NADPH oxidase and was previously thought to be uniquely expressed in phagocytes. Based on structural homology with gp91phox, recent studies have defined a family of NADPH oxidase proteins (Nox) that is widely distributed throughout the plant and animal kingdoms and in many tissues in multicellular organisms. The goals of this review are to review features of the phagocyte NADPH oxidase that serve as a paradigm for exploiting oxidants for host defense, and to discuss contributions of other Nox proteins to innate immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  2. Dinauer MC, Nauseef WM, Newburger PE (2001) Inherited disorders of phagocyte killing. In: Scriver CR et al (ed) The metabolic and molecular bases of inherited diseases. McGraw-Hill, New York, USA, pp 4857–4887

    Google Scholar 

  3. Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood. Am J Dis Child 97:387–408

    CAS  Google Scholar 

  4. Iyer GYN, Quastel JH (1963) NADPH and NADH oxidation by guinea pig polymorphonuclear leukocytes. Can J Biochem Physiol 41:427–434

    PubMed  CAS  Google Scholar 

  5. Baldridge C, Gerard R (1933) The extra respiration of phagocytosis. Am J Physiol 103:235–236

    CAS  Google Scholar 

  6. Iyer GYN, Islam DMF, Quastel JH (1961) Biochemical aspects of phagocytosis. Nature 192:535–541

    Article  CAS  Google Scholar 

  7. Gabig TG, Babior B (1979) The O2-forming oxidase responsible for the respiratory burst in human neutrophils. J Biol Chem 254:9070–9074

    PubMed  CAS  Google Scholar 

  8. Cohen HJ, Newburger PE, Chovaniec ME (1980) NAD(P)H-dependent superoxide production by phagocytic vesicles from guinea pig and human granulocytes. J Biol Chem 255:6584–6588

    PubMed  CAS  Google Scholar 

  9. Hoffman M, Autor AP (1980) Production of superoxide anion by an NADPH-oxidase from rat pulmonary macrophages. FEBS Lett 121:352–354

    Article  PubMed  CAS  Google Scholar 

  10. Klebanoff SJ, Hamon CB (1972) Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc 12:170–196

    PubMed  CAS  Google Scholar 

  11. Rosen H, Klebanoff SJ (1976) Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest 58:50–60

    Article  PubMed  CAS  Google Scholar 

  12. Nauseef WM, Metcalf JA, Root RK (1983) Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood 61:483–491

    PubMed  CAS  Google Scholar 

  13. Jandl RC, Andre-Schwartz J, Borges-DuBois L et al (1978) Termination of the respiratory burst in human neutrophils. J Clin Invest 61:1176–1185

    Article  PubMed  CAS  Google Scholar 

  14. Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362

    PubMed  CAS  Google Scholar 

  15. Cohn ZA, Morse SI (1960) Functional and metabolic properties of polymorphonuclear leukocytes. I. Observations on the requirements and consequences of particle ingestion. J Exp Med 111:667–687

    Article  PubMed  CAS  Google Scholar 

  16. Becker H, Munder G, Fischer H (1958) Über den Leukocytosenstoffwechsel bei der Phagocytose. Hoppe Seyler Z Physiol Chem 313:266–275

    PubMed  CAS  Google Scholar 

  17. Weening RS, Roos D, Loos JA (1974) Oxygen consumption of phagocytizing cells in human leukocyte and granulocyte preparations: a comparative study. J Lab Clin Med 83:570–576

    PubMed  CAS  Google Scholar 

  18. Holmes B, Page AR, Good RA (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46:1422–1432

    PubMed  CAS  Google Scholar 

  19. Quie PG, White JG, Holmes B et al (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 46:668–679

    PubMed  CAS  Google Scholar 

  20. Hohn DC, Lehrer RI (1975) NADPH oxidase deficiency in X-linked chronic granulomatous disease. J Clin Invest 55:707–713

    Article  PubMed  CAS  Google Scholar 

  21. Gabig TG, Bearman SI, Babior BM (1979) Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood 53:1133–1139

    PubMed  CAS  Google Scholar 

  22. Root RK, Metcalf JA (1977) H2O2 release from human granulocytes during phagocytosis. J Clin Invest 60:1266–1279

    Article  PubMed  CAS  Google Scholar 

  23. Koshkin V, Lotan O, Pick E (1997) Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro. Biochim Biophys Acta 1319:139–146

    Article  PubMed  CAS  Google Scholar 

  24. Rotrosen D, Yeung CL, Leto TL et al (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256:1459–1462

    Article  PubMed  CAS  Google Scholar 

  25. Abo A, Boyhan A, West I et al (1992) Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b -245. J Biol Chem 267:16767–16770

    PubMed  CAS  Google Scholar 

  26. Cross AR, Curnutte JT (1995) The cytosolic activating factors p47phox and p67phox have distinct roles in the regulation of electron flow in NADPH oxidase. J Biol Chem 270:6543–6548

    Article  PubMed  CAS  Google Scholar 

  27. Knoller S, Shpungin S, Pick E (1991) The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559. J Biol Chem 266:2795–2804

    PubMed  CAS  Google Scholar 

  28. DeCoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 62:2173–2193

    Article  PubMed  CAS  Google Scholar 

  29. Cohen HJ, Chovaniec ME (1978) Superoxide production by digitonin-stimulated guinea pig granulocytes. J Clin Invest 61:1088–1096

    Article  PubMed  CAS  Google Scholar 

  30. Murphy R, DeCoursey TE (2006) Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757:996–1011

    Article  PubMed  CAS  Google Scholar 

  31. Demaurex N, Petheö G (2005) Electon and proton transport by NADPH oxidases. Phil Trans R Soc B 360:2315–2325

    Article  PubMed  CAS  Google Scholar 

  32. DeCoursey TE (2007) Electrophysiology of the phagocyte respiratory burst. Am J Physiol Cell Physiol 293:C30–C32

    Article  PubMed  CAS  Google Scholar 

  33. Femling JK, Cherny VV, Morgan D et al (2006) The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J Gen Physiol 127:659–672

    Article  PubMed  CAS  Google Scholar 

  34. Essin K, Salanova B, Kettritz R et al (2007) Large-conductance calcium-activated potassium channel activity is absent in human and mouse neutrophils and is not required for innate immunity. Am J Physiol Cell Physiol 293:C45–C54

    Article  PubMed  CAS  Google Scholar 

  35. Hattori H (1961) Studies on the labile, stable Nadi oxidase and peroxidase staining reactions in the isolated particles of horse granulocyte. Nagoya J Med Sci 23:362–378

    PubMed  CAS  Google Scholar 

  36. Shinagawa Y, Tanaka C, Teroaka A et al (1966) A new cytochrome in neutrophilic granules of rabbit leucocyte. J Biochem 59:622–624

    PubMed  CAS  Google Scholar 

  37. Shinagawa Y, Tanaka C, Teroaka A (1966) Electron microscopic and biochemical study of the neutrophilic granules from leucocytes. J Electron Microsc (Tokyo) 15:81–85

    CAS  Google Scholar 

  38. Harper AM, Dunne MJ, Segal AW (1984) Purification of cytochrome b-245 from human neutrophils. Biochem J 219:519–527

    PubMed  CAS  Google Scholar 

  39. Segal AW, Jones OT, Webster D et al (1978) Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet 2:446–449

    Article  PubMed  CAS  Google Scholar 

  40. Segal AW, Jones OTG (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276:515–517

    Article  PubMed  CAS  Google Scholar 

  41. Royer-Pokora B, Kunkel LM, Monaco AP et al (1986) Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature 322:32–38

    Article  PubMed  CAS  Google Scholar 

  42. Dinauer MC, Orkin SH, Brown R et al (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327:717–720

    Article  PubMed  CAS  Google Scholar 

  43. Dinauer MC, Pierce EA, Bruns GAP et al (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737

    Article  PubMed  CAS  Google Scholar 

  44. Suh Y-A, Arnold RS, Lassegue B et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    Article  PubMed  CAS  Google Scholar 

  45. Taylor RM, Baniulis D, Burritt JB et al (2006) Analysis of human phagocyte flavocytochrome B by mass spectrometry. J Biol Chem 281:37045–37056

    Article  PubMed  CAS  Google Scholar 

  46. Taylor RM, Burritt JB, Baniulis D et al (2004) Site-specific inhibitors of NADPH oxidase activity and structural probes of flavocytochrome b: characterization of six monoclonal antibodies to the p22phox subunit. J Immunol 173:7349–7357

    PubMed  CAS  Google Scholar 

  47. Cross AR, Rae J, Curnutte JT (1995) Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem 270:17075–17077

    Article  PubMed  CAS  Google Scholar 

  48. Cross AR, Higson FK, Jones OTG (1982) The enzymic reduction and kinetics of oxidation of cytochrome b of neutrophils. Biochem J 204:479–485

    PubMed  CAS  Google Scholar 

  49. Cross AR, Segal AW (2004) The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim Biophys Acta 1657:1–22

    PubMed  CAS  Google Scholar 

  50. Segal AW (1987) Absence of both cytochrome b-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326:88–91

    Article  PubMed  CAS  Google Scholar 

  51. Parkos CA, Dinauer MC, Jesaitis AJ et al (1989) Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73:1416–1420

    PubMed  CAS  Google Scholar 

  52. DeLeo FR, Burritt JB, Yu L et al (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275:13986–13993

    Article  PubMed  CAS  Google Scholar 

  53. Kume A, Dinauer MC (1994) Retrovirus-mediated reconstitution of respiratory burst activity in X-linked chronic granulomatous disease cells. Blood 84:3311–3316

    PubMed  CAS  Google Scholar 

  54. Maly FE, Schuerer-Maly CC, Quilliam L et al (1993) Restitution of superoxide generation in autosomal cytochrome-negative chronic granulomatous disease (A220 CGD)-derived B lymphocyte cell lines by transfection with p22phox cDNA. J Exp Med 178:2047–2053

    Article  PubMed  CAS  Google Scholar 

  55. Porter CD, Parkar MH, Verhoeven AJ et al (1994) p22phox-deficient chronic granulomatous disease: reconstitution by retrovirus-mediated expression and identification of a biosynthetic intermediate of gp91phox. Blood 84:2767–2775

    PubMed  CAS  Google Scholar 

  56. Zhu Y, Marchal C, Casbon A-J et al (2006) Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem 281:30336–30346

    Article  PubMed  CAS  Google Scholar 

  57. Biberstine-Kinkade KJ, DeLeo FR, Epstein RI et al (2001) Heme-ligating histidines in flavocytochrome b558. J Biol Chem 276:31105–31112

    Article  PubMed  CAS  Google Scholar 

  58. Yu L, DeLeo FR, Biberstine-Kinkade KJ et al (1999) Biosynthesis of flavocytochrome b558. J Biol Chem 274:4364–4369

    Article  PubMed  CAS  Google Scholar 

  59. Biberstine-Kinkade KJ, Yu L, Stull N et al (2002) Mutagenesis of p22phox histidine 94. J Biol Chem 277:30368–30374

    Article  PubMed  CAS  Google Scholar 

  60. Yu L, Dinauer MC (1997) Biosynthesis of the phagocyte NADPH oxidase cytochrome b 558. J Biol Chem 272:27288–27294

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura M, Murakami M, Koga T et al (1987) Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 69:1404–1408

    PubMed  CAS  Google Scholar 

  62. Burritt JB, DeLeo FR, McDonald CL et al (2001) Phage display epitope mapping of human neutrophil flavocytochrome b558. Identification of two juxtaposed extracellular domains. J Biol Chem 276:2053–2061

    Article  PubMed  CAS  Google Scholar 

  63. Yamauchi A, Yu LX, Pötgens AJG et al (2001) Location of the epitope for 7D5, a monoclonal antibody raised against human flavocytochrome b 558, to the extracellular peptide portion of primate gp91phox. Microbiol Immunol 45:249–257

    PubMed  CAS  Google Scholar 

  64. Nakano Y, Banfi B, Jesaitis AJ et al (2007) Critical roles for p22 phox in the structural maturation and subcellular targeting of Nox3. Biochem J 403:97–108

    Article  PubMed  CAS  Google Scholar 

  65. Ueno N, Takeya R, Miyano K et al (2005) The NADPH oxidase NOX3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 280:23328–23339

    Article  PubMed  CAS  Google Scholar 

  66. Kawahara T, Ritsick D, Cheng G et al (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of NOX1- and NOX2-dependent reactive oxygen generation. J Biol Chem 280:31859–31869

    Article  PubMed  CAS  Google Scholar 

  67. Ueyama T, Geiszt M, Leto TL (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26:2160–2174

    Article  PubMed  CAS  Google Scholar 

  68. Ambasta RK, Kumar P, Griendling KK et al (2004) Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279:45935–45941

    Article  PubMed  CAS  Google Scholar 

  69. Martyn KD, Frederick LM, von Loehneysen K et al (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    Article  PubMed  CAS  Google Scholar 

  70. Banfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072

    Article  PubMed  CAS  Google Scholar 

  71. Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88:213–221

    Article  PubMed  CAS  Google Scholar 

  72. Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil NADPH oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1298

    Article  PubMed  CAS  Google Scholar 

  73. Nunoi H, Rotrosen D, Gallin JI et al (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301

    Article  PubMed  CAS  Google Scholar 

  74. Knaus UG, Heyworth PG, Evans T et al (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac2. Science 254:1512–1515

    Article  PubMed  CAS  Google Scholar 

  75. Clark RA, Malech HL, Gallin JI et al (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321:647–652

    PubMed  CAS  Google Scholar 

  76. Segal AW, Heyworth PG, Cockcroft S et al (1985) Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature 316:547–549

    Article  PubMed  CAS  Google Scholar 

  77. Okamura N, Curnutte JT, Roberts RL et al (1988) Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils. J Biol Chem 263:6777–6782

    PubMed  CAS  Google Scholar 

  78. Okamura N, Malawista SE, Roberts RL et al (1988) Phosphorylation of the oxidase-related 48K phosphoprotein family in the unusual autosomal cytochrome-negative and X-linked cytochrome-positive types of chronic granulomatous disease. Blood 72:811–816

    PubMed  CAS  Google Scholar 

  79. Andrews PC, Babior BM (1984) Phosphorylation of cytosolic proteins by resting and activated human neutrophils. Blood 64:883–890

    PubMed  CAS  Google Scholar 

  80. Heyworth PG, Badwey JA (1990) Continuous phosphorylation of both the 47 and the 49 kDa proteins occurs during superoxide production by neutrophils. Biochim Biophys Acta Mol Cell Res 1052:299–305

    Article  CAS  Google Scholar 

  81. Heyworth PG, Karnovsky ML, Badwey JA (1989) Protein phosphorylation associated with synergistic stimulation of neutrophils. J Biol Chem 264:14935–14939

    PubMed  CAS  Google Scholar 

  82. Gennaro R, Florio C, Romeo D (1985) Activation of protein kinase C in neutrophil cytoplasts. FEBS Lett 180:185–190

    Article  PubMed  CAS  Google Scholar 

  83. Okamura N, Ohashi S, Nagahisa N et al (1984) Changes in protein phosphorylation in guinea pig polymorphonuclear leukocytes by treatment with membrane-perturbing agents which stimulate superoxide anion production. Arch Biochem Biophys 228:270–277

    Article  PubMed  CAS  Google Scholar 

  84. White JR, Huang C-K, Hill JM Jr et al (1984) Effect of phorbol 12-myristate 13-acetate and its analogue 4a-phorbol 12,13-didecanoate on protein phosphorylation and lysosomal enzyme release in rabbit neutrophils. J Biol Chem 259:8605–8611

    PubMed  CAS  Google Scholar 

  85. Heyworth PG, Segal AW (1986) Further evidence for the involvement of a phosphoprotein in the respiratory burst oxidase of human neutrophils. Biochem J 239:723–731

    PubMed  CAS  Google Scholar 

  86. Teahan CG, Totty N, Casimir CM et al (1990) Purification of the 47 kDa phosphoprotein associated with the NADPH oxidase of human neutrophils. Biochem J 267:485–489

    PubMed  CAS  Google Scholar 

  87. Hayakawa T, Suzuki K, Suzuki S et al (1986) A possible role for protein phosphorylation in the activation of respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease. J Biol Chem 261:9109–9115

    PubMed  CAS  Google Scholar 

  88. Ago T, Takeya R, Hiroaki H et al (2001) The PX domain as a novel phosphoinositide-binding module. Biochem Biophys Res Commun 287:733–738

    Article  PubMed  CAS  Google Scholar 

  89. Ellson C, Gobert-Gosse S, Anderson K et al (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat Cell Biol 3:679–682

    Article  PubMed  CAS  Google Scholar 

  90. Kanai F, Liu H, Field S et al (2000) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3:675–678

    Article  CAS  Google Scholar 

  91. Ellson C, Davidson K, Anderson K et al (2006) Ptdlns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO J 25:4468–4478

    Article  PubMed  CAS  Google Scholar 

  92. Karathanassis D, Stahelin RV, Bravo J et al (2002) Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21:5057–5068

    Article  PubMed  CAS  Google Scholar 

  93. Zhan Y, Virbasius JV, Song X et al (2002) The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J Biol Chem 277:4512–4518

    Article  PubMed  CAS  Google Scholar 

  94. Hiroaki H, Ago T, Ito T et al (2001) Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol 8:526–530

    Article  PubMed  CAS  Google Scholar 

  95. Nauseef WM, Volpp BD, McCormick S et al (1991) Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem 266:5911–5917

    PubMed  CAS  Google Scholar 

  96. Faust LP, El Benna J, Babior BM et al (1995) The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis. J Clin Invest 96:1499–1505

    Article  PubMed  CAS  Google Scholar 

  97. Inanami O, Johnson JL, McAdara JK et al (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47PHOX on serine 303 or 304. J Biol Chem 273:9539–9543

    Article  PubMed  CAS  Google Scholar 

  98. Nauseef WM (2004) Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122:277–291

    Article  PubMed  CAS  Google Scholar 

  99. Heyworth PG, Curnutte JT, Nauseef WM et al (1991) Neutrophil NADPH oxidase assembly. Membrane translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356

    Article  PubMed  CAS  Google Scholar 

  100. Nisimoto Y, Motalebi S, Han CH et al (1999) The p67phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b558. J Biol Chem 274:22999–23005

    Article  PubMed  CAS  Google Scholar 

  101. DerMardirossian C, Schnelzer A, Bokoch GM (2004) Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 15:117–127

    Google Scholar 

  102. Heyworth PG, Bohl BP, Bokoch GM et al (1994) Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b 558 . J Biol Chem 269:30749–30752

    PubMed  CAS  Google Scholar 

  103. Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100:2692–2696

    Article  PubMed  CAS  Google Scholar 

  104. Sarfstein R, Gorzalczany Y, Mizrahi A et al (2004) Dual role of rac in the assembly of NADPH oxidase: tethering to the membrane and activation of p67phox. J Biol Chem 279:16007–16016

    Article  PubMed  CAS  Google Scholar 

  105. Gauss KA, Nelson-Overton LK, Siemsen DW et al (2007) Role of NF-kB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-a. J Leukoc Biol 82:729–741

    Article  PubMed  CAS  Google Scholar 

  106. Anrather J, Racchumi G, Iadecola C (2006) NF-kB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281:5657–5667

    Article  PubMed  CAS  Google Scholar 

  107. Dusi S, Donini M, Lissandrini D et al (2001) Mechanisms of expression of NADPH oxidase components in human cultured monocytes: role of cytokines and transcriptional regulators involved. Eur J Immunol 31:929–938

    Article  PubMed  CAS  Google Scholar 

  108. Intl Chron Granulom Dis Study Grp (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group. N Engl J Med 324:509–516

    Google Scholar 

  109. Condino-Neto A, Newburger P (2000) Interferon-gamma improves splicing efficiency of CYBB gene transcripts in an interferon-responsive variant of chronic granulomatous disease due to a splice site consensus region mutation. Blood 95:3548–3554

    PubMed  CAS  Google Scholar 

  110. Ishibashi F, Mizukami T, Kanegasaki S et al (2001) Improved superoxide-generating ability by interferon g due to splicing pattern change of transcripts in neutrophils from patients with a splice site mutation in CYBB gene. Blood 98:436–441

    Article  PubMed  CAS  Google Scholar 

  111. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    Article  PubMed  CAS  Google Scholar 

  112. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  113. Winterbourn CC, Hampton MB, Livesey JH et al (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome. J Biol Chem 281:39860–39869

    Article  PubMed  CAS  Google Scholar 

  114. Hawkins DL, Davies MJ (1999) Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centered radicals and their role in protein fragmentation. Biochem J 340:539–548

    Article  PubMed  CAS  Google Scholar 

  115. Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13:3271–3290

    Article  PubMed  CAS  Google Scholar 

  116. Pattison DI, Davies MJ (2001) Absolute rate constants for the reactions of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol 14:1453–1464

    Article  PubMed  CAS  Google Scholar 

  117. Hawkins CL, Pattison DI, Davies MJ (2003) Hypochlorite-induced oxidation of amino acids, peptides, and proteins. Amino Acids 25:259–274

    Article  PubMed  CAS  Google Scholar 

  118. Hurst JK, Barrette WC Jr., Michel BR et al (1991) Hypochlorous acid and myeloperoxidase-catalyzed oxidation of iron-sulfur clusters in bacterial respiratory dehydrogenases. Eur J Biochem 202:1275–1282

    Article  PubMed  CAS  Google Scholar 

  119. Rakita RM, Michel BR, Rosen H (1990) Differential inactivation of Escherichia coli membrane dehydrogenases by a myeloperoxidase-mediated antimicrobial system. Biochemistry 29:1075–1080

    Article  PubMed  CAS  Google Scholar 

  120. Rakita RM, Michel BR, Rosen H (1989) Myeloperoxidase-mediated inhibition of microbial respiration: damage to Escherichia coli ubiquinol oxidase. Biochemistry 28:3031–3036

    Article  PubMed  CAS  Google Scholar 

  121. Rosen H, Crowley JR, Heinecke JW (2002) Human neutrophils use the myeloperoxidase-hydrogen peroxide–chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem 277:30463–30468

    Article  PubMed  CAS  Google Scholar 

  122. Chapman ALP, Hampton MB, Senthilmohan R et al (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 277:9757–9762

    Article  PubMed  CAS  Google Scholar 

  123. Zgliczynski JM, Stelmaszynska T, Domanski J et al (1971) Chloramines as intermediates of oxidative reaction of amino acids by myeloperoxidase. Biochem Biophys Acta 235:419–424

    PubMed  CAS  Google Scholar 

  124. Zgliczynski JM, Stelmaszynska T (1975) Chlorinating ability of human phagocytosing leucocytes. Eur J Biochem 56:157–162

    Article  PubMed  CAS  Google Scholar 

  125. Thomas EL, Bozeman PM, Learn DB (1991) Lactoperoxidase: structural and catalytic properties. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. vol. 1. CRC Press, Boca Raton, FL, pp 123–142

    Google Scholar 

  126. Weiss SJ, Klein R, Slivka A et al (1982) Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest 70:598–607

    Article  PubMed  CAS  Google Scholar 

  127. Weiss SJ, Lampert MB, Test ST (1983) Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science 222:625–628

    Article  PubMed  CAS  Google Scholar 

  128. Weiss SJ, Test ST, Eckmann CM et al (1986) Brominating oxidants generated by human eosinophils. Science 234:200–202

    Article  PubMed  CAS  Google Scholar 

  129. Kettle AJ, Winterbourn CC (1999) Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochem J 252:529–536

    Google Scholar 

  130. Kettle AJ, Anderson RF, Hampton MB et al (2007) Reactions of superoxide with myeloperoxidase. Biochemistry 46:4888–4897

    Article  PubMed  CAS  Google Scholar 

  131. Savina A, Jancic C, Hugues S et al (2006) NOX2 controls phagosomal pH to regulate antigen processing during cross presentation by dendritic cells. Cell 126:205–218

    Article  PubMed  CAS  Google Scholar 

  132. Bleesing JJ, Souto-carneiro MM, Savage WJ et al (2006) Patients with chronic granulomatous disease have a reduced peripheral blood memory B cell compartment. J Immunol 176:7096–7103

    PubMed  CAS  Google Scholar 

  133. Romani L, Fallarino F, De Luca A et al (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–216

    Article  PubMed  CAS  Google Scholar 

  134. Lambeth JD, Kawahara T, Diebold B (2007) Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med 43:319–331

    Article  PubMed  CAS  Google Scholar 

  135. Geiszt M (2006) NADPH oxidases: new kids on the block. Cardiovasc Res 71:289–299

    Article  PubMed  CAS  Google Scholar 

  136. Bedard K, Lardy B, Krause K-H (2007) NOX family NADPH oxidases: not just in mammals. Biochemie 89:1107–1112

    Article  CAS  Google Scholar 

  137. Miller FJ Jr., Filali M, Huss GJ et al (2007) Cytokine activation of nuclear factor kB in vascular smooth muscle cells requires signaling endosomes containing Nox1 and CLC-3. Circ Res 101:663–671

    Article  PubMed  CAS  Google Scholar 

  138. Cheng G, Diebold BA, Hughes Y et al (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281:17718–17726

    Article  PubMed  CAS  Google Scholar 

  139. Kawahara T, Kohjima M, Kuwano Y et al (2005) Helicobacter pylori lipopolysaccharide activates rac1 and transcription of NADPH oxidase NOX1 and its organizer NOXO1 in guinea pig gastric mucosal cells. Am J Physiol Cell Physiol 288:C450–C457

    Article  PubMed  CAS  Google Scholar 

  140. Miyano K, Ueno N, Takeya R et al (2006) Direct involvement of the small GTPase rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281:21857–21868

    Article  PubMed  CAS  Google Scholar 

  141. Park HS, Lee S-H, Park D et al (2004) Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, Nox1 in growth factor-induced production of H2O2. Mol Cell Biol 24:4384–4394

    Article  PubMed  CAS  Google Scholar 

  142. Takeya R, Ueno N, Kami K et al (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-production NADPH oxidases. J Biol Chem 278:25234–25246

    Article  PubMed  CAS  Google Scholar 

  143. Gorin Y, Ricono JM, Kim N-H et al (2003) Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol Renal Physiol 285:F219–F229

    PubMed  CAS  Google Scholar 

  144. Inoguchi T, Sonta T, Tsubouchi H et al (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14:S227–S232

    Article  PubMed  CAS  Google Scholar 

  145. Bánfi B, Tirone F, Durussel I et al (2004) Mechanism of Ca2 + activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591

    Article  PubMed  CAS  Google Scholar 

  146. Ameziane-El-Hassani R, Morand S, Boucher J-L et al (2005) Dual oxidase-2 has an intrinsic Ca2 + -dependent H2O2-generating activity. J Biol Chem 280:30046–30054

    Article  PubMed  CAS  Google Scholar 

  147. Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109

    Article  PubMed  CAS  Google Scholar 

  148. Tirone F, Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581:1202–1208

    Article  PubMed  CAS  Google Scholar 

  149. Serrander L, Jaquet V, Bedard K et al (2007) NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89:1159–1167

    Article  PubMed  CAS  Google Scholar 

  150. Jagnandan D, Church JE, Banfi B et al (2007) Novel mechanism of activation of NADPH oxidase 5(NOX5): calcium-sensitization via phosphorylation. J Biol Chem 282:6494–6507

    Article  PubMed  CAS  Google Scholar 

  151. Bánfi B, Molnár G, Maturana A et al (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601

    Article  PubMed  Google Scholar 

  152. Benedyk M, Sopalla C, Nacken W et al (2007) HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kB activities. J Invest Dermatol 127:2001–2011

    Article  PubMed  CAS  Google Scholar 

  153. Cheng G, Cao Z, Xu X et al (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140

    Article  PubMed  CAS  Google Scholar 

  154. Salles N, Szanto I, Herrmann F et al (2005) Expression of mRNA for ROS-generating NADPH oxidases in the aging stomach. Exp Gerontol 40:353–357

    Article  PubMed  CAS  Google Scholar 

  155. Kamiguti AS, Serrander L, Lin K et al (2005) Expression and activity of NOX5 in the circulating malignant B cells of hairy cell leukemia. J Immunol 175:8424–8430

    PubMed  CAS  Google Scholar 

  156. Brar SS, Corbin Z, Kennedy TP et al (2003) NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol 285:C353–C369

    PubMed  CAS  Google Scholar 

  157. van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44(6):938–955

    Article  PubMed  CAS  Google Scholar 

  158. Geiszt M, Leto TL (2004) The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 279:51715–51718

    Article  PubMed  CAS  Google Scholar 

  159. Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9:11–17

    Article  PubMed  Google Scholar 

  160. Grandvaux N, Soucy-Faulkner A, Fink K (2007) Innate host defense: nox and duox on phox's tail. Biochimie 89:1113–1122

    Article  PubMed  CAS  Google Scholar 

  161. Leto TL, Geiszt M (2006) Role of Nox family NADPH oxidases in host defense. Antioxid Redox Signal 8:1549–1561

    Article  PubMed  CAS  Google Scholar 

  162. Szanto I, Rubbia-Brandt L, Kiss P et al (2005) Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol 207:164–176

    Article  PubMed  CAS  Google Scholar 

  163. Bánfi B, Clark RA, Steger K et al (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513

    Article  PubMed  CAS  Google Scholar 

  164. Kawahara T, Kuwano Y, Teshima-Kondo S et al (2004) Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 172:3051–3058

    PubMed  CAS  Google Scholar 

  165. Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  166. Kumar GNM, Iyer S, Knowles NR (2007) Strboh A homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers. Planta 227:25–36

    Article  PubMed  CAS  Google Scholar 

  167. Foreman J, Demidchik V, Bothwell JHF et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  168. Dangl JL, McDowell JM (2006) Two modes of pathogen recognition by plants. Proc Natl Acad Sci U S A 103:8575–8576

    Article  PubMed  CAS  Google Scholar 

  169. Egan MJ, Wang Z-Y, Jones MA et al (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 104:11772–11777

    Article  PubMed  CAS  Google Scholar 

  170. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  PubMed  CAS  Google Scholar 

  171. De Muñez FG-G, Lanz-Mendoza H, Hernández-Hernández FC (2007) Free radical generation during the activation of hemolymph prepared from the homopteran Dactylopius coccus. Arch Insect Biochem Physiol 65:20–28

    Article  CAS  Google Scholar 

  172. Pereira LS, Oliveira PL, Barja-Fidalgo C et al (2001) Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Exp Parasitol 99:66–72

    Article  PubMed  CAS  Google Scholar 

  173. Molina-Cruz A, DeJong RJ, Charles B et al (2008) Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem 283:3217–3223

    Article  PubMed  CAS  Google Scholar 

  174. Dancer SJ (2004) How antibiotics can make us sick: the less obvious adverse effects of antimicrobial chemotherapy. Lancet 4:611–619

    CAS  Google Scholar 

  175. Dème D, Doussiere J, De Sandro V et al (1994) The Ca2 + /NADPH-dependent H2O2 generator in thyroid plasma membrane: inhibition by diphenyleneiodonium. Biochem J 301:75–81

    PubMed  Google Scholar 

  176. Dupuy C, Ohayon R, Valent A et al (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. J Biol Chem 274:37265–37269

    Article  PubMed  CAS  Google Scholar 

  177. de Deken X, Wang D, Dumont JE et al (2002) Characterization of ThOX proteins as components of the thyroid H2O2-generating system. Exp Cell Res 273:187–196

    Article  PubMed  CAS  Google Scholar 

  178. Dupuy C, Virion A, Ohayon R et al (1991) Mechanism of H2O2 formation catalyzed by NADPH oxidase in thyroid plasma membrane. J Biol Chem 266:3739–3743

    PubMed  CAS  Google Scholar 

  179. Grasberger H, de Deken X, Miot F et al (2007) Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol Endocrinol 21:1408–1421

    Article  PubMed  CAS  Google Scholar 

  180. Moreno JC, Bikker H, Kempers MJE et al (2002) Inactivating mutations in the gene for thyroid oxidase 2 (thox2) and congenital hypothyroidism. N Engl J Med 347:95–102

    Article  PubMed  CAS  Google Scholar 

  181. Moreno JC, Visser TJ (2007) New phenotypes in thyroid dyshormonogenesis:hypothyroidism due to DUOX2 mutations. Endocr Dev 10:99–117

    Article  PubMed  CAS  Google Scholar 

  182. De Vijlder JJM, Bikker H, Ris Stalpers C et al (1997) Structure, function, and relevance of thyroid peroxidase in inherited diseases of the thyroid. Curr Opin Endocrinol Diabetes 4:328–332

    Article  Google Scholar 

  183. Heinecke JW, Shapiro BM (1989) Respiratory burst oxidase of fertilization. Proc Natl Acad Sci U S A 86:1259–1263

    Article  PubMed  CAS  Google Scholar 

  184. Heinecke JW, Shapiro BM (1992) The respiratory burst oxidase of fertilization: a physiological target for regulation by protein kinase C. J Biol Chem 267:7959–7962

    PubMed  CAS  Google Scholar 

  185. Wong JL, Créton R, Wessel GM (2004) The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 7:801–814

    Article  PubMed  CAS  Google Scholar 

  186. Edens WA, Sharling L, Cheng G et al (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154:879–891

    Article  PubMed  CAS  Google Scholar 

  187. Ris-Stalpers C (2006) Physiology and pathophysiology of the duoxes. Antioxid Redox Signal 8:1563–1572

    Article  PubMed  CAS  Google Scholar 

  188. Geiszt M, Witta J, Baffi J et al (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17:1502–1504

    PubMed  CAS  Google Scholar 

  189. Donko A, Peterfi Z, Sum A et al (2005) Dual oxidases. Philos Trans R Soc Lond [Biol] 360:2301–2308

    Article  CAS  Google Scholar 

  190. El Hassani RA, Benfares N, Caillou B et al (2005) Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 288:G933–G942

    Article  PubMed  CAS  Google Scholar 

  191. Klebanoff SJ, Clem WH, Luebke RG (1966) The peroxidase–thiocyanate–hydrogen peroxide antimicrobial system. Biochim Biophys Acta 117:63–72

    PubMed  CAS  Google Scholar 

  192. Reiter N, Perraudin JP (1991) Lactoperoxidase: biological function. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. vol. 1. CRC Press, Boca Raton, FL, pp 143–180

    Google Scholar 

  193. Ha E-M, Oh C-T, Bae Y-S et al (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

    Article  PubMed  CAS  Google Scholar 

  194. Conner GE, Salathe M, Forteza R (2002) Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am J Respir Crit Care Med 166:S57–S61

    Article  PubMed  Google Scholar 

  195. El-Chemaly S, Salathe M, Baier S et al (2003) Hydrogen peroxide-scavenging properties of normal human airway secretions. Am J Respir Crit Care Med 167:425–430

    Article  PubMed  Google Scholar 

  196. Forteza R, Salathe M, Miot F et al (2005) Regulated hydrogen peroxide production by duox in human airway epithelial cells. Am J Respir Cel Mol Biol 32:462–469

    Article  CAS  Google Scholar 

  197. Fragoso MA, Fernandez V, Forteza R et al (2004) Transcellular thiocyanate transport by human airway epithelia. J Physiol 561:183–194

    Article  PubMed  CAS  Google Scholar 

  198. Harper RW, Xu C, McManus M et al (2006) Duox2 exhibits potent heme peroxidase activity in human respiratory tract epithelium. FEBS Lett 580:5150–5154

    Article  PubMed  CAS  Google Scholar 

  199. Moskwa P, Lorentzen D, Excoffon KJ et al (2007) A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 175:174–183

    Article  PubMed  CAS  Google Scholar 

  200. Schwarzer C, Machen TE, Illek B et al (2004) NADPH oxidase-dependent acid production in airway epithelial cells. J Biol Chem 279:36454–36461

    Article  PubMed  CAS  Google Scholar 

  201. Wijkstrom-Frei C, El-Chemaly S, Ali-Rachedi R et al (2003) Lactoperoxidase and human airway host defense. Am J Respir Cell Mol Biol 29:206–212

    Article  PubMed  CAS  Google Scholar 

  202. Salathe M, Holderby M, Forteza R et al (1997) Isolation and characterization of a peroxidase from the airway. Am J Respir Cell Mol Biol 17:97–105

    PubMed  CAS  Google Scholar 

  203. Christensen TG (1984) The distribution and function of peroxidases in the respiratory tract. Surv Synth Pathol Res 3:201–218

    PubMed  CAS  Google Scholar 

  204. Ihalin R, Loimaranta V, Tenovuo J (2005) Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 445:261–268

    Article  PubMed  CAS  Google Scholar 

  205. Vilja P, Lumikari M, Tenovuo J et al (1991) Sensitive immunometric assays for secretory peroxidase and myeloperoxidase in human saliva. J Immunol Methods 141:277–284

    Article  PubMed  CAS  Google Scholar 

  206. Tenovuo J, Makinen KK, Sievers G (1985) Antibacterial effect of lactoperoxidase and myeloperoxidase against Bacillus cereus. Antimicrob Agents Chemother 27:96–101

    PubMed  CAS  Google Scholar 

  207. Thomas EL, Fishman M (1986) Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem 261:9694–9702

    PubMed  CAS  Google Scholar 

  208. Thomas EL, Aune TM (1978) Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action. Infect Immun 20:456–463

    PubMed  CAS  Google Scholar 

  209. Pollock JR, Goff HM (1992) Lactoperoxidase-catalyzed oxidation of thiocyanate ion: a carbon-13 nuclear magnetic resonance study of the oxidation products. Biochim Biophys Acta 1159:279–285

    PubMed  CAS  Google Scholar 

  210. Modi S, Deodhar SS, Behere DV et al (1991) Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: 15N nuclear magnetic resonance and optical spectral studies. Biochemistry 30:118–124

    Article  PubMed  CAS  Google Scholar 

  211. Løvaas E (1992) Free radical generation and coupled thiol oxidation by lactoperoxidase/SCN-/H2O2. Free Radic Biol Med 13:187–195

    Article  PubMed  Google Scholar 

  212. Senthilmohan R, Kettle AJ (2006) Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Arch Biochem Biophys 445:235–44

    Article  PubMed  CAS  Google Scholar 

  213. Gaut JP, Ydh GC, Tran HD et al (2001) Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proc Natl Acad Sci U S A 98:11961–11966

    Article  PubMed  CAS  Google Scholar 

  214. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  PubMed  CAS  Google Scholar 

  215. Shao MXG, Nadel JA (2005) Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci U S A 102:767–772

    Article  PubMed  CAS  Google Scholar 

  216. Kuwahara I, Lillejoh EP, Koga T et al (2007) The signaling pathway involved in neutrophil elastase-stimulated MUC1 transcription. Am J Respir Cell Mol Bio 37:691–698

    Article  CAS  Google Scholar 

  217. Yan F, Li W, Jono H et al (2008) Reactive oxygen species regulate Pseudomonas aeruginosa lipopolysaccharide-induced MuC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-a signaling pathways in human airway epithelial cells. Biochem Biophys Res Commun 366:513–519

    Article  PubMed  CAS  Google Scholar 

  218. Nakanaga T, Nadel JA, Ueki IF et al (2007) Regulation of interleukin-8 via an airway epithelial signaling cascade. Am J Physiol Lung Cell Mol Physiol 292:L1289–L1296

    Article  PubMed  CAS  Google Scholar 

  219. Nakano Y, Longo-Guess CM, Bergstrom DE, Nauseef WM, Jones SM, Banfi B (2008) Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice. J Clin Invest 118:1176–1185

    Google Scholar 

Download references

Acknowledgements

Work in the Nauseef laboratory is supported by grants from the National Institutes of Health (AI 34879, HL 53592, AI 44642) and the Veterans Administration (Merit Review).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Nauseef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauseef, W.M. Nox enzymes in immune cells. Semin Immunopathol 30, 195–208 (2008). https://doi.org/10.1007/s00281-008-0117-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-008-0117-4

Keywords

Navigation