Skip to main content
Log in

Fcγ receptor-dependent effector mechanisms regulate CD19 and CD20 antibody immunotherapies for B lymphocyte malignancies and autoimmunity

  • Review
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Immunotherapy using Rituximab, an unconjugated CD20 monoclonal antibody, has proven effective for treating non-Hodgkin’s lymphoma and autoimmune disease. CD19 antibody immunotherapy is also effective in mouse models of lymphoma and autoimmunity. In both cases, mouse models have demonstrated that effector cell networks effectively deplete the vast majority of circulating and tissue B lymphocytes through Fcγ receptor-dependent pathways. In mice, B cell depletion is predominantly, if not exclusively, mediated by monocytes. CD20 mAbs rapidly deplete circulating and tissue B cells in an antibody isotype-restricted manner with a hierarchy of antibody effectiveness: IgG2a/c > IgG1 > IgG2b >> IgG3. Depending on antibody isotype, mouse B cell depletion is regulated by FcγRI-, FcγRII-, FcγRIII-, and FcγRIV-dependent pathways. The potency of IgG2a/c mAbs for B cell depletion in vivo results from FcγRIV interactions, with likely contributions from high-affinity FcγRI. IgG1 mAbs induce B cell depletion through preferential, if not exclusive, interactions with low-affinity FcγRIII, while IgG2b mAbs interact preferentially with intermediate-affinity FcγRIV. By contrast, inhibitory FcγRIIB-deficiency significantly increases CD20 mAb-induced B cell depletion at low mAb doses by enhancing monocyte function. Thus, isotype-specific mAb interactions with distinct FcγRs contribute significantly to the effectiveness of CD20 mAbs in vivo. These results provide a molecular basis for earlier observations that human FcγRII and FcγRIII polymorphisms correlate with the in vivo effectiveness of CD20 antibody therapy. That the innate monocyte network depletes B cells through FcγR-dependent pathways during immunotherapy has important clinical implications for CD19, CD20, and other antibody-based therapies for the treatment of diverse B cell malignancies and autoimmune disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Almasri NM, Duque RE, Iturraspe J et al (1992) Reduced expression of CD20 antigen as a characteristic marker for chronic lymphocytic leukemia. Am J Hematol 40:259–263

    PubMed  CAS  Google Scholar 

  2. Anderson DR, Grillo-López A, Varns C et al (1997) Targeted anti-cancer therapy using Rituximab, a chimeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin’s B-cell lymphoma. Biochem Soc Trans 25:705–708

    PubMed  CAS  Google Scholar 

  3. Anderson KC, Bates MP, Slaughenhoupt B et al (1984) Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 63:1424–1433

    PubMed  CAS  Google Scholar 

  4. Anolik JH, Campbell D, Felgar RE et al (2003) The relationship of FcγRIIIa genotype to degree of B cell depletion by Rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48:455–459

    PubMed  CAS  Google Scholar 

  5. Ansell SM, Witzig TE, Kurtin PJ et al (2002) Phase 1 study of interleukin-12 in combination with Rituximab in patients with B-cell non-Hodgkin lymphoma. Blood 99:67–74

    PubMed  CAS  Google Scholar 

  6. Azeredo da Silveira S, Kikuchi S, Fossati-Jimack L et al (2002) Complement activation selectively potentiates the pathogenecity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J Exp Med 195:665–672

    PubMed  CAS  Google Scholar 

  7. Baldridge JR, Buchmeier MJ (1992) Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J Virol 66:4252–4257

    PubMed  CAS  Google Scholar 

  8. Bellosillo B, Villamor N, López-Guillermo A et al (2001) Complement-mediated cell death induced by Rituximab in B-cell lymphoproliferative disorders is mediated in vitro by caspase-independent mechanism involving the generation of reactive oxygen species. Blood 98:2771–2777

    PubMed  CAS  Google Scholar 

  9. Botto M, Dell’Agnola MC, Bygrave AE et al (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    PubMed  CAS  Google Scholar 

  10. Bruhns P, Samuelsson A, Pollard JW et al (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18:573–581

    PubMed  CAS  Google Scholar 

  11. Bubien JK, Zhou L-J, Bell PD et al (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca++ conductance found constitutively in B lymphocytes. J Cell Biol 121:1121–1132

    PubMed  CAS  Google Scholar 

  12. Camilleri-Broet S, Mounier N, Delmer A et al (2004) FcγRIIB expression in diffuse large B-cell lymphomas does not alter the response to CHOP+Rituximab (R-CHOP). Leukemia 18:2038–2040

    PubMed  CAS  Google Scholar 

  13. Cartron G, Dacheux L, Salles G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99:754–758

    PubMed  CAS  Google Scholar 

  14. Cecchini MG, Dominguez MG, Mocci S et al (1994) Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120:1357–1372

    PubMed  CAS  Google Scholar 

  15. Clynes RA, Towers TL, Presta LG et al (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446

    PubMed  CAS  Google Scholar 

  16. Coiffier B, Haioun C, Ketterer N et al (1998) Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 92:1927–1932

    PubMed  CAS  Google Scholar 

  17. Coutelier JP, van der Logt JT, Heessen FW et al (1987) IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med 165:64–69

    PubMed  CAS  Google Scholar 

  18. Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103:2738–2743

    PubMed  CAS  Google Scholar 

  19. Cragg MS, Morgan MS, Chan HT et al (2003) Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 101:1045–1052

    PubMed  CAS  Google Scholar 

  20. Daniel PT, Kroidl A, Kopp J et al (1998) Immunotherapy of B-cell lymphoma with CD3x19 bispecific antibodies: costimulation via CD28 prevents “veto” apoptosis of antibody-targeted cytotoxic T cells. Blood 92:4750–4757

    PubMed  CAS  Google Scholar 

  21. Davis RS, Dennis G Jr, Odom MR et al (2002) Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol Rev 190:123–136

    PubMed  CAS  Google Scholar 

  22. Demidem A, Lam T, Alas S et al (1997) Chimeric anti-CD20 antibody (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs. Cancer Biother Radiopharm 12:177–186

    Article  PubMed  CAS  Google Scholar 

  23. Denkers EY, Badger CC, Ledbetter JA et al (1985) Influence of antibody isotype on passive serotherapy of lymphoma. J Immunol 135:2183–2186

    PubMed  CAS  Google Scholar 

  24. Di Gaetano N, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of Rituximab in vivo. J Immunol 171:1581–1587

    PubMed  Google Scholar 

  25. Dijstelbloem HM, van de Winkel JGJ, Kallenberg CGM (2001) Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol 22:510–516

    PubMed  CAS  Google Scholar 

  26. Dyall R, Vasovic LV, Clynes RA et al (1999) Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor. Eur J Immunol 29:30–37

    PubMed  CAS  Google Scholar 

  27. Edwards JCW, Cambridge G (2001) Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology 40:205–211

    PubMed  CAS  Google Scholar 

  28. Elasser D, Valerius T, Repp R et al (1996) HLA class II as potential target antigen on malignant B cells for therapy with bispecific antibodies in combination with granulocyte colony-stimulating factor. Blood 87:3803–3812

    Google Scholar 

  29. Engel P, Zhou L-J, Ord DC et al (1995) Abnormal B lymphocyte development, activation and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3:39–50

    PubMed  CAS  Google Scholar 

  30. Farag SS, Flinn IW, Modali R et al (2004) FcγRIIIa and FcγRIIa polymorphisms do not predict response to Rituximab in B-cell chronic lymphocytic leukemia. Blood 103:1472–1474

    PubMed  CAS  Google Scholar 

  31. Fossati-Jimack L, Reininger L, Chicheportiche Y et al (1999) High pathogenic potential of low-affinity autoantibodies in experimental autoimmune hemolytic anemia. J Exp Med 190:1689–1696

    PubMed  CAS  Google Scholar 

  32. Fossati-Jimack L, Ioan-Facsinay A, Reininger L et al (2000) Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcγ receptor III. J Exp Med 191:1293–1302

    PubMed  CAS  Google Scholar 

  33. Gavin AL, Barnes N, Dijstelbloem HM et al (1998) Cutting edge: identification of the mouse IgG3 receptor: implications for antibody effector function at the interface between innate and adaptive immunity. J Immunol 160:20–23

    PubMed  CAS  Google Scholar 

  34. Ghetie M-A, Picker LJ, Richardson JA et al (1994) Anti-CD19 inhibits the growth of human B-cell tumor lines in vitro and of Daudi cells in SCID mice by inducing cell cycle arrest. Blood 83:1329–1336

    PubMed  CAS  Google Scholar 

  35. Ginaldi L, De Martinis M, Matutes E et al (1988) Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol 51:364–369

    Article  Google Scholar 

  36. Golay J, Zaffaroni L, Vaccari T et al (2000) Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody Rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95:3900–3908

    PubMed  CAS  Google Scholar 

  37. Golay J, Lazzari M, Facchinetti V et al (2001) CD20 levels determine the in vitro susceptibility to Rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 98:3383–3389

    PubMed  CAS  Google Scholar 

  38. Gong Q, Ou Q, Ye S et al (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174:817–826

    PubMed  CAS  Google Scholar 

  39. Grossbard ML, Press OW, Appelbaum FR et al (1992) Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 80:863–878

    PubMed  CAS  Google Scholar 

  40. Grossbard ML, Fidias P, Kinsella J et al (1998) Anti-B4-blocked ricin: a phase II trial of 7 day continuous infusion in patients with multiple myeloma. Br J Haematol 102:509–515

    PubMed  CAS  Google Scholar 

  41. Grossbard ML, Multani PS, Freedman AS et al (1999) A phase II study of adjuvant therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res 5:2392–2398

    PubMed  CAS  Google Scholar 

  42. Haas KM, Sen S, Sanford IG et al (2006) CD22 ligand binding regulates normal and malignant B lymphocyte survival in vivo. J Immunol 177:3063–3073

    PubMed  CAS  Google Scholar 

  43. Hamaguchi Y, Uchida J, Cain DW et al (2005) The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice. J Immunol 174(7):4389–4399

    PubMed  CAS  Google Scholar 

  44. Hamaguchi Y, Xiu Y, Komura K et al (2006) Antibody isotype-specific engagement of Fcγ receptors regulates B lymphocyte depletion during CD20 immunotherapy. J Exp Med 203:743–753

    PubMed  CAS  Google Scholar 

  45. Harada H, Kawano MM, Huang N et al (1993) Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 81:2658–2663

    PubMed  CAS  Google Scholar 

  46. Hasegawa H, Hamaguchi Y, Yanaba K et al (2006) B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis. Am J Pathol 169(3):954–966

    PubMed  CAS  Google Scholar 

  47. Hazenbos WLW, Gessner JE, Hofhuis FMA et al (1996) Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD16) deficient mice. Immunity 5:181–188

    PubMed  CAS  Google Scholar 

  48. Hazenbos WLW, Heijnen IAFM, Meyer D et al (1998) Murine IgG1 complexes trigger immune effector functions predominantly via FcγRIII (CD16). J Immunol 161:3026–3032

    PubMed  CAS  Google Scholar 

  49. Hekman A, Honselaar A, Vuist WMJ et al (1991) Initial experience with treatment of human B cell lymphoma with anti-CD19 monoclonal antibody. Cancer Immunol Immunother 32:364–372

    PubMed  CAS  Google Scholar 

  50. Herlyn D, Koprowski H (1982) IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells. Proc Natl Acad Sci USA 79:4761–4765

    PubMed  CAS  Google Scholar 

  51. Ioan-Facsinay A, de Kimpe SJ, Hellwig SMM et al (2002) FcγRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16:391–402

    PubMed  CAS  Google Scholar 

  52. Isaacs JD, Clark MR, Greenwood J et al (1992) Therapy with monoclonal antibodies. An in vivo model for the assessment of therapeutic potential. J Immunol 148:3062–3071

    PubMed  CAS  Google Scholar 

  53. Isaacs JD, Greenwood J, Waldmann H (1998) Therapy with monoclonal antibodies. II. The contribution of Fcγ receptor binding and the influence of CH1 and CH3 domains on in vivo effector function. J Immunol 161:3862–3869

    PubMed  CAS  Google Scholar 

  54. Kaminski MS, Kitamura K, Maloney DG et al (1986) Importance of antibody isotype in monoclonal anti-idiotype therapy of a murine B cell lymphoma. A study of hybridoma class switch variants. J Immunol 136:1123–1130

    PubMed  CAS  Google Scholar 

  55. Kaminski MS, Zasadny KR, Francis IR et al (1993) Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 329:459–465

    PubMed  CAS  Google Scholar 

  56. Kennedy AD, Solga MD, Schuman TA et al (2003) An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by Rituximab. Blood 101:1071–1079

    PubMed  CAS  Google Scholar 

  57. Kimberly RP, Wu J, Gibson AW et al (2002) Diversity and duplicity: human Fcγ receptors in host defense and autoimmunity. Immunol Res 26:177–189

    PubMed  CAS  Google Scholar 

  58. Klaus GG, Pepys MB, Kitajima K et al (1979) Activation of mouse complement by different classes of mouse antibody. Immunology 38:687–695

    PubMed  CAS  Google Scholar 

  59. Leandro MJ, Edwards JC, Cambridge G et al (2002) An open study of B lymphocyte depletion in systemic lupus erythematosis. Arthritis Rheum 46:2673–2677

    PubMed  Google Scholar 

  60. Liang Y, Tedder TF (2001) Identification of a CD20, FcεRIb and HTm4 related gene family. Sixteen new MS4A family members expressed in human and mouse. Genomics 72:119–127

    PubMed  CAS  Google Scholar 

  61. Liang Y, Buckley TR, Tu L et al (2001) Structural organization of the human MS4A gene cluster on chromosome 11q12: twelve members of the CD20, FcεRIb and HTm4 gene family. Immunogenetics 53:357–368

    PubMed  CAS  Google Scholar 

  62. Liu AY, Robinson RR, Murray ED Jr et al (1987) Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol 139:3521–3526

    PubMed  CAS  Google Scholar 

  63. Maloney DG, Liles TM, Czerwinski DK et al (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84:2457–2466

    PubMed  CAS  Google Scholar 

  64. Maloney DG, Grillo LA, Bodkin DJ et al (1997) IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol 15:3266–3274

    PubMed  CAS  Google Scholar 

  65. Maloney DG, Grillo-Lopez AJ, White CA et al (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195

    PubMed  CAS  Google Scholar 

  66. Markine-Goriaynoff D, Coutelier JP (2002) Increased efficacy of the immunoglobulin G2a subclass in antibody-mediated protection against lactate dehydrogenase-elevating virus-induced polioencephalomyelitis revealed with switch mutants. J Virol 76:432–435

    PubMed  CAS  Google Scholar 

  67. Martin F, Chan AC (2004) Pathogenic roles of B cells in human autoimmunity: insights from the clinic. Immunity 20:517–527

    PubMed  CAS  Google Scholar 

  68. Martin RM, Brady JL, Lew AM (1998) The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods 212:187–192

    PubMed  CAS  Google Scholar 

  69. Mathas S, Rickers A, Bommert K et al (2000) Anti-CD20- and B-cell receptor-mediated apoptosis: evidence for shared intracellular signaling pathways. Cancer Res 60:7170–7176

    PubMed  CAS  Google Scholar 

  70. McLaughlin P, Grillo LA, Link BK et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833

    PubMed  CAS  Google Scholar 

  71. McLaughlin P, White CA, Grillo-Lopez AJ et al (1998) Clinical status and optimal use of Rituximab for B-cell lymphomas. Oncology 12:1763–1769

    PubMed  CAS  Google Scholar 

  72. Mechetina LV, Najakshin AM, Alabyev BY et al (2002) Identification of CD16-2, a novel mouse receptor homologous to CD16/FcγRIII. Immunogenetics 54:463–468

    PubMed  CAS  Google Scholar 

  73. Meyer D, Schiller C, Westermann J et al (1998) FcγRIII (CD16)-deficient mice show IgG isotype dependent protection to experimental autoimmune hemolytic anemia. Blood 92:3997–4002

    PubMed  CAS  Google Scholar 

  74. Nadler LM, Takvorian T, Botnick L et al (1984) Anti-B1 monoclonal antibody and complement treatment in autologous bone-marrow transplantation for relapsed B-cell non-Hodgkin’s lymphoma. Lancet 2:427–431

    PubMed  CAS  Google Scholar 

  75. Neuberger MS, Rajewsky K (1981) Activation of mouse complement by monoclonal mouse antibodies. Eur J Immunol 11:1012–1016

    PubMed  CAS  Google Scholar 

  76. Nimmerjahn F, Ravetch JV (2006) Fcγ receptors: old friends and new family members. Immunity 24:19–28

    PubMed  CAS  Google Scholar 

  77. Nimmerjahn F, Bruhns P, Horiuchi K et al (2005) FcγRIV: A novel FcR with distinct IgG subclass specificity. Immunity 23:41–51

    PubMed  CAS  Google Scholar 

  78. Onrust SV, Lamb HM, Balfour JA (1999) Rituximab. Drugs 58:79–88

    PubMed  CAS  Google Scholar 

  79. Pietersz GA, Wenjun L, Sutton VR et al (1995) In vitro and in vivo antitumor activity of a chimeric anti-CD19 antibody. Cancer Immunol Immunother 41:53–60

    PubMed  CAS  Google Scholar 

  80. Poe JC, Fujimoto Y, Hasegawa M et al (2004) CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol 5:1078–1087

    PubMed  CAS  Google Scholar 

  81. Press OW, Leonard JP, Coiffier B et al (2001) Immunotherapy of Non-Hodgkin’s lymphomas. Hematology (Am Soc Hematol Educ Program) 2001:221–240

    Google Scholar 

  82. Reddy MP, Kinney CAS, Chaikin MA et al (2000) Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol 164:1925–1933

    PubMed  CAS  Google Scholar 

  83. Reff ME, Carner K, Chambers KS et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445

    PubMed  CAS  Google Scholar 

  84. Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291:484–486

    PubMed  CAS  Google Scholar 

  85. Sato S, Ono N, Steeber DA et al (1996) CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J Immunol 157:4371–4378

    PubMed  CAS  Google Scholar 

  86. Sato S, Steeber DA, Jansen PJ et al (1997) CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol 158:4662–4669

    PubMed  CAS  Google Scholar 

  87. Sato S, Hasegawa M, Fujimoto M et al (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity in mice and humans. J Immunol 165:6635–6643

    PubMed  CAS  Google Scholar 

  88. Scheuermann RH, Racila E (1995) CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18:385–397

    PubMed  CAS  Google Scholar 

  89. Schlageter AM, Kozel TR (1990) Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide. Infect Immun 58:1914–1918

    PubMed  CAS  Google Scholar 

  90. Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:1644–1652

    PubMed  CAS  Google Scholar 

  91. Shan D, Ledbetter JA, Press OW (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother 48:673–683

    PubMed  CAS  Google Scholar 

  92. Silverman GJ, Weisman S (2003) Rituximab therapy and autoimmune disorders: prospects for anti-B cell therapy. Arthritis Rheum 48:1484–1492

    PubMed  CAS  Google Scholar 

  93. Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22:7359–7368

    PubMed  CAS  Google Scholar 

  94. St Clair WE, Tedder TF (2006) New prospects for autoimmune disease therapy: B cells on deathwatch. Arthritis Rheum 54:1–9

    PubMed  CAS  Google Scholar 

  95. Stockmeyer B, Elsasser D, Dechant M et al (2001) Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. J Immunol Methods 248:103–111

    PubMed  CAS  Google Scholar 

  96. Stockmeyer B, Schiller M, Repp R et al (2002) Enhanced killing of B lymphoma cells by granulocyte colony-stimulating factor-primed effector cells and Hu1D10—a humanized human leukocyte antigen DR antibody. Br J Haematol 118:959–967

    PubMed  CAS  Google Scholar 

  97. Sylvestre DL, Clynes R, Ma M et al (1996) Immunoglobulin G-mediated inflammatory responses develop normally in complement-deficient mice. J Exp Med 184:2385–2392

    PubMed  CAS  Google Scholar 

  98. Taborda CP, Rivera J, Zaragoza O et al (2003) More is not necessarily better: prozone-like effects in passive immunization with IgG. J Immunol 170:3621–3630

    PubMed  CAS  Google Scholar 

  99. Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2:580–592

    PubMed  CAS  Google Scholar 

  100. Takai T, Li M, Sylvestre D et al (1994) FcR γ chain depletion results in pleiotrophic effector cell defects. Cell 76:519–529

    PubMed  CAS  Google Scholar 

  101. Tedder TF, Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15:450–454

    PubMed  CAS  Google Scholar 

  102. Tedder TF, Isaacs CM (1989) Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes: a new member of the immunoglobulin superfamily. J Immunol 143:712–717

    PubMed  CAS  Google Scholar 

  103. Tedder TF, Inaoki M, Sato S (1997) The CD19/21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6:107–118

    PubMed  CAS  Google Scholar 

  104. Tedder TF, Poe JC, Haas KM (2005) CD22: a multi-functional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 88:1–50

    PubMed  CAS  Google Scholar 

  105. Terstappen LW, Johnsen S, Segers-Nolten IM et al (1990) Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 76:1739–1747

    PubMed  CAS  Google Scholar 

  106. Treon SP, Mitsiades C, Mitsiades N et al (2001) Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J Immunother 24:263–271

    CAS  Google Scholar 

  107. Tuscano JM, Harris G, Tedder TF (2003) B lymphocytes contribute to autoimmune disease pathogenesis: current trends and clinical implications. Autoimmun Rev 2:101–108

    PubMed  Google Scholar 

  108. Uchida J, Hamaguchi Y, Oliver JA et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669

    PubMed  CAS  Google Scholar 

  109. Uchida J, Lee Y, Hasegawa M et al (2004) Mouse CD20 expression and function. Int Immunol 16:119–129

    PubMed  CAS  Google Scholar 

  110. Uckun FM, Jaszcz W, Ambrus JL et al (1988) Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 71:13–29

    PubMed  CAS  Google Scholar 

  111. van der Kolk LE, Grillo-López AJ, Baars JW et al (2001) Complement activation plays a key role in the side-effects of Rituximab treatment. Br J Haematol 115:807–811

    PubMed  Google Scholar 

  112. van der Kolk LE, de Haas M, Grillo-Lopez AJ et al (2002) Analysis of CD20-dependent cellular cytotoxicity by G-CSF-stimulated neutrophils. Leukemia 16:693–699

    PubMed  Google Scholar 

  113. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    PubMed  Google Scholar 

  114. Vieira P, Rajewsky K (1988) The half-lives of serum immunoglobulins in adult mice. Eur J Immunol 18:313–316

    PubMed  CAS  Google Scholar 

  115. Vlasveld LT, Hekman A, Vyth-Dreese FA et al (1995) Treatment of low-grade non-Hodgkin’s lymphoma with continuous infusion of low-dose recombinant interleukin-2 in combination with the B-cell-specific monoclonal antibody CLB-CD19. Cancer Immunol Immunother 40:37–47

    PubMed  CAS  Google Scholar 

  116. Vuist WMJ, Buitenen Fv, de Rie MA et al (1989) Potentiation by interleukin 2 of Burkitt’s lymphoma therapy with anti-pan B (anti-CD19) monoclonal antibodies in a mouse xenotransplantation model. Cancer Res 49:3783–3788

    PubMed  CAS  Google Scholar 

  117. Vuist WMJ, Buitenen Fv, Hekman A et al (1990) Two distinct mechanisms of antitumor activity mediated by the combination of interleukin 2 and monoclonal antibodies. Cancer Res 50:5767–5772

    PubMed  CAS  Google Scholar 

  118. Weiner GJ (2003) Rituximab: complementary mechanisms of action. Blood 101:788

    CAS  Google Scholar 

  119. Weiner LM (1999) Monoclonal antibody therapy of cancer. Semin Oncol 26:43–51

    PubMed  CAS  Google Scholar 

  120. Weng W-K, Levy R (2001) Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after Rituximab treatment in follicular non-Hodgkin lymphoma. Blood 98:1352–1357

    PubMed  CAS  Google Scholar 

  121. Weng W-K, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to Rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947

    PubMed  CAS  Google Scholar 

  122. Wessels MR, Butko P, Ma M et al (1995) Studies of group B streptococcal infection in mice deficient in complement C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc Natl Acad Sci USA 92:11490–11494

    PubMed  CAS  Google Scholar 

  123. Westermann J, Pabst R (1991) Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system? Immunol Today 11:406–410

    Google Scholar 

  124. Yazawa N, Hamaguchi Y, Poe JC et al (2005) Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci USA 102:15178–15183

    PubMed  CAS  Google Scholar 

  125. Zhou L-J, Smith HM, Waldschmidt TJ et al (1994) Tissue-specific expression of the human CD19 gene in transgenic mice inhibits antigen-independent B lymphocyte development. Mol Cell Biol 14:3884–3894

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (CA105001, CA96547, AI56363, and CA098492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Tedder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tedder, T.F., Baras, A. & Xiu, Y. Fcγ receptor-dependent effector mechanisms regulate CD19 and CD20 antibody immunotherapies for B lymphocyte malignancies and autoimmunity. Springer Semin Immun 28, 351–364 (2006). https://doi.org/10.1007/s00281-006-0057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-006-0057-9

Keywords

Navigation