Skip to main content

Advertisement

Log in

Disturbances in placental immunology: ready for therapeutic interventions?

  • Original Article
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Recent studies have provided new insight into aberrations in the immunological interplay between mother and fetus and their potential role in the development of recurrent fetal loss and preeclampsia. The action of anti-phospholipid antibodies in recurrent fetal loss is now proposed to involve the complement system, neutrophil activation and the production of TNFα by immune bystander cells. A clear involvement of the immune system is emerging in preeclampsia, involving mainly the innate arm, especially neutrophils. The activation of peripheral neutrophils by placentally released inflammatory debris triggers the induction of neutrophil extracellular traps (NETs), which may lead to an occlusion of the intervillous space, thereby further promoting a condition of placental hypoxia. It has, hence, been suggested that new therapeutic strategies be developed, including the possible use of TNFα antagonists in cases of recurrent miscarriage. These strategies need to be addressed with caution due to the possible induction of fetal congenital abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Medawar PB (1961) Immunological tolerance. Nature 189:14–17

    Article  PubMed  CAS  Google Scholar 

  2. Carrington B, Sacks G, Regan L (2005) Recurrent miscarriage: pathophysiology and outcome. Curr Opin Obstet Gynecol 17:591–597

    Article  PubMed  Google Scholar 

  3. Meroni PL, di Simone N, Testoni C, D’Asta M, Acaia B, Caruso A (2004) Antiphospholipid antibodies as cause of pregnancy loss. Lupus 13:649–652

    Article  PubMed  CAS  Google Scholar 

  4. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594

    Article  PubMed  CAS  Google Scholar 

  5. Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365:785–799

    PubMed  Google Scholar 

  6. Hahn S, Huppertz B, Holzgreve W (2005) Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta 26:515–526

    Article  PubMed  CAS  Google Scholar 

  7. von Dadelszen P, Magee LA, Roberts JM (2003) Subclassification of preeclampsia. Hypertens Pregnancy 22:143–148

    Article  Google Scholar 

  8. Sebire NJ, Goldin RD, Regan L (2005) Term preeclampsia is associated with minimal histopathological placental features regardless of clinical severity. J Obstet Gynaecol 25:117–118

    Article  PubMed  CAS  Google Scholar 

  9. Burton GJ, Jauniaux E (2004) Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 11:342–352

    Article  PubMed  CAS  Google Scholar 

  10. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683

    Article  PubMed  CAS  Google Scholar 

  11. Robillard PY, Dekker GA, Hulsey TC (1999) Revisiting the epidemiological standard of preeclampsia: primigravidity or primipaternity? Eur J Obstet Gynecol Reprod Biol 84:37–41

    Article  PubMed  CAS  Google Scholar 

  12. Dekker GA, Robillard PY, Hulsey TC (1998) Immune maladaptation in the etiology of preeclampsia: a review of corroborative epidemiologic studies. Obstet Gynecol Surv 53:377–382

    Article  PubMed  CAS  Google Scholar 

  13. Redman CW, Sargent IL (2000) Placental debris, oxidative stress and pre-eclampsia. Placenta 21:597–602

    Article  PubMed  CAS  Google Scholar 

  14. Hiby SE, Walker JJ, O’shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Moffett A (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200:957–965

    Article  PubMed  CAS  Google Scholar 

  15. Chamley LW (1997) Antiphospholipid antibodies or not? The role of beta 2 glycoprotein 1 in autoantibody-mediated pregnancy loss. J Reprod Immunol 36:123–142

    Article  PubMed  CAS  Google Scholar 

  16. Chamley LW, Allen JL, Johnson PM (1997) Synthesis of beta2 glycoprotein 1 by the human placenta. Placenta 18:403–410

    Article  PubMed  CAS  Google Scholar 

  17. Chamley LW, Duncalf AM, Mitchell MD, Johnson PM (1998) Action of anticardiolipin and antibodies to beta2-glycoprotein-I on trophoblast proliferation as a mechanism for fetal death. Lancet 352:1037–1038

    Article  PubMed  CAS  Google Scholar 

  18. di Simone N, Castellani R, Caliandro D, Caruso A (2002) Antiphospholid antibodies regulate the expression of trophoblast cell adhesion molecules. Fertil Steril 77:805–811

    Article  PubMed  Google Scholar 

  19. di Simone N, Castellani R, Caliandro D, Caruso A (2001) Monoclonal anti-annexin V antibody inhibits trophoblast gonadotropin secretion and induces syncytiotrophoblast apoptosis. Biol Reprod 65:1766–1770

    Article  PubMed  Google Scholar 

  20. Bose P, Black S, Kadyrov M, Bartz C, Shlebak A, Regan L, Huppertz B (2004) Adverse effects of lupus anticoagulant positive blood sera on placental viability can be prevented by heparin in vitro. Am J Obstet Gynecol 191:2125–2131

    Article  PubMed  CAS  Google Scholar 

  21. Bose P, Kadyrov M, Goldin R, Hahn S, Backos M, Regan L, Huppertz B (2006) Aberrations of early trophoblast differentiation predispose to pregnancy failure: lessons from the anti-phospholipid syndrome. Placenta (In press) PMID 16289730

  22. Bose P, Black S, Kadyrov M, Weissenborn U, Neulen J, Regan L, Huppertz B (2005) Heparin and aspirin attenuate placental apoptosis in vitro: implications for early pregnancy failure. Am J Obstet Gynecol 192:23–30

    Article  PubMed  CAS  Google Scholar 

  23. Chen Q, Stone PR, Woon ST, Ching LM, Hung S, McCowan LM, Chamley LW (2004) Antiphospholipid antibodies bind to activated but not resting endothelial cells: is an independent triggering event required to induce antiphospholipid antibody-mediated disease? Thromb Res 114:101–111

    Article  PubMed  CAS  Google Scholar 

  24. Salmon JE, Girardi G (2004) The role of complement in the antiphospholipid syndrome. Curr Dir Autoimmun 7:133–148

    Article  PubMed  CAS  Google Scholar 

  25. Holers VM, Girardi G, Mo L, Guthridge JM, Molina H, Pierangeli SS, Espinola R, Xiaowei LE, Mao D, Vialpando CG, Salmon JE (2002) Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med 195:211–220

    Article  PubMed  CAS  Google Scholar 

  26. Girardi G, Berman J, Redecha P, Spruce L, Thurman JM, Kraus D, Hollmann TJ, Casali P, Caroll MC, Wetsel RA, Lambris JD, Holers VM, Salmon JE (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112:1644–1654

    PubMed  CAS  Google Scholar 

  27. Girardi G, Redecha P, Salmon JE (2004) Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 10:1222–1226

    Article  PubMed  CAS  Google Scholar 

  28. Berman J, Girardi G, Salmon JE (2005) TNF-alpha is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. J Immunol 174:485–490

    PubMed  CAS  Google Scholar 

  29. Yui J, Garcia-Lloret M, Wegmann TG, Guilbert LJ (1994) Cytotoxicity of tumour necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts. Placenta 15:819–835

    Article  PubMed  CAS  Google Scholar 

  30. Hristoskova S, Holzgreve W, Hahn S (2004) Anti-phospholipid and anti-DNA antibodies are not associated with the elevated release of circulatory fetal DNA in pregnancies affected by preeclampsia. Hypertens Pregnancy 23:257–268

    Article  PubMed  CAS  Google Scholar 

  31. Bowen RS, Moodley J, Dutton MF, Fickl H (2002) Antibodies to oxidised low-density lipoproteins and cardiolipin in pre-eclampsia and eclampsia. J Obstet Gynaecol 22:123–126

    Article  PubMed  CAS  Google Scholar 

  32. Ellis SA, Sargent IL, Redman CW, McMichael AJ (1986) Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology 59:595–601

    PubMed  CAS  Google Scholar 

  33. Hviid TV (2006) HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update (In press)

  34. Hunt JS, Petroff MG, McIntire RH, Ober C (2005) HLA-G and immune tolerance in pregnancy. FASEB J 19:681–693

    Article  PubMed  CAS  Google Scholar 

  35. Le Bouteiller P, Pizzato N, Barakonyi A, Solier C (2003) HLA-G, pre-eclampsia, immunity and vascular events. J Reprod Immunol 59:219–234

    Article  PubMed  CAS  Google Scholar 

  36. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  37. Parham P (2004) NK cells and trophoblasts: partners in pregnancy. J Exp Med 200:951–955

    Article  PubMed  CAS  Google Scholar 

  38. van den Heuvel MJ, Xie X, Tayade C, Peralta C, Fang Y, Leonard S, Paffaro VA Jr, Sheikhi AK, Murrant C, Croy BA (2005) A review of trafficking and activation of uterine natural killer cells. Am J Reprod Immunol 54:322–331

    Article  PubMed  CAS  Google Scholar 

  39. Monk JM, Leonard S, McBey BA, Croy BA (2005) Induction of murine spiral artery modification by recombinant human interferon-gamma. Placenta 26:835–838

    Article  PubMed  CAS  Google Scholar 

  40. Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S, Puppo F (2003) Soluble HLA-A, -B, -C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol 33:125–134

    Article  PubMed  CAS  Google Scholar 

  41. Le Friec G, Laupeze B, Fardel O, Sebti Y, Pangault C, Guilloux V, Beauplet A, Fauchet R, Amiot L (2003) Soluble HLA-G inhibits human dendritic cell-triggered allogeneic T-cell proliferation without altering dendritic differentiation and maturation processes. Hum Immunol 64:752–761

    Article  PubMed  CAS  Google Scholar 

  42. Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, Carosella ED, Charpentier B, Durrbach A (2006) Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol 176:1331–1339

    PubMed  CAS  Google Scholar 

  43. Goldman-Wohl DS, Ariel I, Greenfield C, Hochner-Celnikier D, Cross J, Fisher S, Yagel S (2000) Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with pre-eclampsia. Mol Hum Reprod 6:88–95

    Article  PubMed  CAS  Google Scholar 

  44. Christiansen OB, Mohapeloa HP, Steffensen R, Jersild C (1997) HLA-C and -Bw typing of couples with unexplained recurrent miscarriages. J Reprod Immunol 37:63–77

    Article  PubMed  CAS  Google Scholar 

  45. Karhukorpi J, Laitinen T, Tiilikainen AS (1997) HLA-G polymorphism in Finnish couples with recurrent spontaneous miscarriage. Br J Obstet Gynaecol 104:1212–1214

    PubMed  CAS  Google Scholar 

  46. Aldrich CL, Stephenson MD, Karrison T, Odem RR, Branch DW, Scott JR, Schreiber JR, Ober C (2001) HLA-G genotypes and pregnancy outcome in couples with unexplained recurrent miscarriage. Mol Hum Reprod 7:1167–1172

    Article  PubMed  CAS  Google Scholar 

  47. Pfeiffer KA, Fimmers R, Engels G, d van V, d van V (2001) The HLA-G genotype is potentially associated with idiopathic recurrent spontaneous abortion. Mol Hum Reprod 7:373–378

    Article  PubMed  CAS  Google Scholar 

  48. Sher G, Keskintepe L, Fisch JD, Acacio BA, Ahlering P, Batzofin J, Ginsburg M (2005) Soluble human leukocyte antigen G expression in phase I culture media at 46 hours after fertilization predicts pregnancy and implantation from day 3 embryo transfer. Fertil Steril 83:1410–1413

    Article  PubMed  Google Scholar 

  49. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  PubMed  CAS  Google Scholar 

  50. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    Article  PubMed  CAS  Google Scholar 

  51. Santoso DI, Rogers P, Wallace EM, Manuelpillai U, Walker D, Subakir SB (2002) Localization of indoleamine 2,3-dioxygenase and 4-hydroxynonenal in normal and pre-eclamptic placentae. Placenta 23:373–379

    Article  PubMed  CAS  Google Scholar 

  52. Clark DA, Blois S, Kandil J, Handjiski B, Manuel J, Arck PC (2005) Reduced uterine indoleamine 2,3-dioxygenase versus increased TH1/TH2 cytokine ratios as a basis for occult and clinical pregnancy failure in mice and humans. Am J Reprod Immunol 54:203–216

    Article  PubMed  CAS  Google Scholar 

  53. Chaouat G, Ledee-Bataille N, Dubanchet S, Zourbas S, Sandra O, Martal J (2004) TH1/TH2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the TH1/TH2 paradigm. Int Arch Allergy Immunol 134:93–119

    Article  PubMed  Google Scholar 

  54. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    Article  PubMed  CAS  Google Scholar 

  55. Hahn S, Gehri R, Erb P (1995) Mechanism and biological significance of CD4-mediated cytotoxicity. Immunol Rev 146:57–79

    Article  PubMed  CAS  Google Scholar 

  56. Stalder T, Hahn S, Erb P (1994) Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol 152:1127–1133

    PubMed  CAS  Google Scholar 

  57. Hahn S, Erb P (1999) The immunomodulatory role of CD4-positive cytotoxic T-lymphocytes in health and disease. Int Rev Immunol 18:449–464

    PubMed  CAS  Google Scholar 

  58. Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14:353–356

    Article  PubMed  CAS  Google Scholar 

  59. Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG (1993) Synthesis of T helper 2-type cytokines at the maternal–fetal interface. J Immunol 151:4562–4573

    PubMed  CAS  Google Scholar 

  60. Fievet N, Moussa M, Tami G, Maubert B, Cot M, Deloron P, Chaouat G (2001) Plasmodium falciparum induces a Th1/Th2 disequilibrium, favoring the Th1-type pathway, in the human placenta. J Infect Dis 183:1530–1534

    Article  PubMed  CAS  Google Scholar 

  61. Zenclussen AC, Fest S, Joachim R, Klapp BF, Arck PC (2004) Introducing a mouse model for pre-eclampsia: adoptive transfer of activated Th1 cells leads to pre-eclampsia-like symptoms exclusively in pregnant mice. Eur J Immunol 34:377–387

    Article  PubMed  CAS  Google Scholar 

  62. Sacks G, Sargent I, Redman C (1999) An innate view of human pregnancy. Immunol Today 20:114–118

    Article  PubMed  CAS  Google Scholar 

  63. Sargent IL, Germain SJ, Sacks, GP, Kumar S, Redman CW (2003) Trophoblast deportation and the maternal inflammatory response in pre-eclampsia. J Reprod Immunol 59:153–160

    Article  PubMed  CAS  Google Scholar 

  64. Huppertz B, Kingdom J, Caniggia I, Desoye G, Black S, Korr H, Kaufmann P (2003) Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta 24:181–190

    Article  PubMed  CAS  Google Scholar 

  65. Degenne D, Khalfoun B, Bardos P (1986) In vitro inhibitory effect of human syncytiotrophoblast plasma membranes on the cytolytic activities of CTL and NK cells. Am J Reprod Immunol Microbiol 12:106–110

    PubMed  CAS  Google Scholar 

  66. Thibault G, Degenne D, Lacord M, Guillaumin JM, Girard AC, Bardos P (1992) Inhibitory effect of human syncytiotrophoblast plasma membrane vesicles on Jurkat cells activated by phorbol ester and calcium ionophore. Cell Immunol 139:259–267

    Article  PubMed  CAS  Google Scholar 

  67. Knight M, Redman CW, Linton EA, Sargent IL (1998) Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol 105:632–640

    PubMed  CAS  Google Scholar 

  68. Gupta AK, Rusterholz C, Huppertz B, Malek A, Schneider H, Holzgreve W, Hahn S (2005) A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta 26:59–66

    Article  PubMed  CAS  Google Scholar 

  69. Gupta AK, Rusterholz C, Holzgreve W, Hahn S (2005) Syncytiotrophoblast micro-particles do not induce apoptosis in peripheral T lymphocytes, but differ in their activity depending on the mode of preparation. J Reprod Immunol 68:15–26

    Article  PubMed  CAS  Google Scholar 

  70. Rusterholz C, Gupta AK, Huppertz B, Holzgreve W, Hahn S (2005) Soluble factors released by placental villous tissue: interleukin-1 is a potential mediator of endothelial dysfunction. Am J Obstet Gynecol 192:618–624

    Article  PubMed  CAS  Google Scholar 

  71. Gupta AK, Holzgreve W, Hahn S (2005) Microparticle-free placentally derived soluble factors downmodulate the response of activated T cells. Hum Immunol 66:977–984

    Article  PubMed  CAS  Google Scholar 

  72. Sacks GP, Studena K, Sargent IL, Redman CW (1997) CD11b expression on circulating neutrophils in pre-eclampsia. Clin Sci (Lond) 93:187—189

    CAS  Google Scholar 

  73. Brinkman V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532—1535

    Article  CAS  Google Scholar 

  74. Hahn S, Holzgreve W (2002) Fetal cells and cell-free fetal DNA in maternal blood: new insights into pre-eclampsia. Hum Reprod Update 8:501–508

    Article  PubMed  CAS  Google Scholar 

  75. Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153:80–82

    Article  PubMed  CAS  Google Scholar 

  76. Mitchell RA (2004) Mechanisms and effectors of MIF-dependent promotion of tumourigenesis. Cell Signal 16:13–19

    Article  PubMed  CAS  Google Scholar 

  77. Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY (1998) Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol 160:5693–5696

    PubMed  CAS  Google Scholar 

  78. Niederkorn JY, Wang S (2005) Immune privilege of the eye and fetus: parallel universes? Transplantation 80:1139–1144

    Article  PubMed  Google Scholar 

  79. Todros T, Bontempo S, Piccoli E, Ietta F, Romagnoli R, Biolcati M, Castellucci M, Paulesu L (2005) Increased levels of macrophage migration inhibitory factor (MIF) in preeclampsia. Eur J Obstet Gynecol Reprod Biol 123(2):162–166

    Article  PubMed  CAS  Google Scholar 

  80. Hristoskova S, Holzgreve W, Zhong XY, Hahn S (2005) Macrophage migration inhibition factor is elevated in pregnancy, but not to a greater extent in preeclampsia. Arch Gynecol Obstet 1–4:1–4

    Google Scholar 

  81. Holzgreve W, Hahn S (1999) Novel molecular biological approaches for the diagnosis of preeclampsia. Clin Chem 45:451–452

    PubMed  CAS  Google Scholar 

  82. Shoenfeld Y, Katz U (2005) IVIg therapy in autoimmunity and related disorders: our experience with a large cohort of patients. Autoimmunity 38:123–137

    Article  PubMed  CAS  Google Scholar 

  83. Pandey MK, Rani R, Agrawal S (2005) An update in recurrent spontaneous abortion. Arch Gynecol Obstet 272:95–108

    Article  PubMed  CAS  Google Scholar 

  84. Pandey MK, Agrawal S (2004) Induction of MLR-Bf and protection of fetal loss: a current double blind randomized trial of paternal lymphocyte immunization for women with recurrent spontaneous abortion. Int Immunopharmacol 4:289–298

    Article  PubMed  CAS  Google Scholar 

  85. Di Nisio M, Peters L, Middeldorp S (2005) Anticoagulants for the treatment of recurrent pregnancy loss in women without antiphospholipid syndrome. Cochrane Database Syst Rev CD004734

  86. Carp HJ, Dirnfeld M, Dor J, Grudzinskas JG (2004) ART in recurrent miscarriage: preimplantation genetic diagnosis/screening or surrogacy? Hum Reprod 19:1502–1505

    Article  PubMed  CAS  Google Scholar 

  87. Audibert F (2005) Screening for pre-eclampsia: the quest for the Holy Grail? Lancet 365:1367–1369

    Article  PubMed  Google Scholar 

  88. Rumbold A, Middleton P, Crowther CA (2005) Vitamin supplementation for preventing miscarriage. Cochrane Database Syst Rev CD004073

  89. Oettle C, Hall D, Roux A, Grove D (2005) Early onset severe pre-eclampsia: expectant management at a secondary hospital in close association with a tertiary institution. BJOG 112:84–88

    PubMed  Google Scholar 

  90. Hanff LM, Visser W, Roofthooft DW, Vermes A, Hop WC, Steegers EA, Vulto AG (2005) Insufficient efficacy of intravenous ketanserin in severe early-onset pre-eclampsia. Eur J Obstet Gynecol Reprod Biol

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinuhe Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, S., Gupta, A.K., Troeger, C. et al. Disturbances in placental immunology: ready for therapeutic interventions?. Springer Semin Immun 27, 477–493 (2006). https://doi.org/10.1007/s00281-006-0016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-006-0016-5

Keywords

Navigation