Skip to main content

Advertisement

Log in

Human innate B cells: a link between host defense and autoimmunity?

  • Original Article
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

B cells play a variety of immunoregulatory roles through their antigen-presentation ability and through cytokine and chemokine production. Innate immune activation of B cells may play a beneficial role through the generation of natural cross-reactive antibodies, by maintaining B cell memory and by exercising immunomodulatory functions that may provide protection against autoimmunity. In this article, we review human B cell populations and their functional properties, with a particular focus on a population of inherently autoreactive B cells, which seem to play an important physiological role in innate immunity, but which, if selected into adaptive immune responses, appear to become pathogenic agents in systemic lupus erythematosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martin F, Oliver AM, Kearney JF (2001) Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14:617

    Google Scholar 

  2. Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199

    Google Scholar 

  3. Chan O, Shlomchik MJ (1998) A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol 160:51

    Google Scholar 

  4. Harris DP, Haynes L, Sayles PC, et al (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1:475

    Google Scholar 

  5. Yu P, Wang Y, Chin RK, et al (2002) B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. J Immunol 168:5117

    Google Scholar 

  6. Schaerli P, Willimann K, Lang AB, et al (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192:1553

    Google Scholar 

  7. Boes M, Prodeus AP, Schmidt T, et al (1998) A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med 188:2381

    Google Scholar 

  8. Ochsenbein AF, Fehr T, Lutz C, et al (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156

    Google Scholar 

  9. Essen D van, Dullforce P, Gray D (2000) Role of B cells in maintaining helper T-cell memory. Phil Trans Royal Soc London Series B 355:351

    Google Scholar 

  10. Fillatreau S, Sweenie CH, McGeachy MJ, et al (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944

    Google Scholar 

  11. Boes M, Schmidt T, Linkemann K, et al (2000) Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci USA 97:1184

    Google Scholar 

  12. Tian J, Zekzer D, Hanssen L, et al (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 167:1081

    Google Scholar 

  13. Leadbetter EA, Rifkin IR, Hohlbaum AM, et al (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603

    Google Scholar 

  14. Fields ML, Erikson J (2003) The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Curr Opin Immunol 15:709

    Google Scholar 

  15. Pugh-Bernard AE, Silverman GJ, Cappione AJ, et al (2001) Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J Clin Invest 108:1061

    Google Scholar 

  16. Martin F, Kearney JF (2000) B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol Rev 175:70

    Google Scholar 

  17. Carsetti R, Rosado MM, Wardmann H (2004) Peripheral development of B cells in mouse and man. Immunol Rev 197:179

    Google Scholar 

  18. Lopes-Carvalho T, Kearney JF (2004) Development and selection of marginal zone B cells. Immunol Rev 197:192

    Google Scholar 

  19. Wardemann H, Boehm T, Dear N, et al (2002) B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J Exp Med 195:771

    Google Scholar 

  20. Kruetzmann S, Rosado MM, Weber H, et al (2003) Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 197:939

    Google Scholar 

  21. Kasaian MT, Casali P (1993) Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity 15:315

    Google Scholar 

  22. Zandvoort A, Lodewijk ME, Boer NK de, et al (2001) CD27 expression in the human splenic marginal zone: the infant marginal zone is populated by naive B cells. Tissue Antigen 58:234

    Google Scholar 

  23. Weller S, Braun MC, Tan BK, et al (2004) Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a pre-diversified immunoglobulin repertoire. Blood:2004

  24. Pascual V, Liu YJ, Magalski A, et al (1994) Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med 180:329

    Google Scholar 

  25. Bohnhorst J, Bjorgan MB, Thoen JE, et al (2001) Bm1-bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the b cell subpopulations in patients with primary sjogren’s syndrome. J Immunol 167:3610

    Google Scholar 

  26. Klein U, Rajewsky K, Kuppers R (1998) Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes; CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 188:1679

    Google Scholar 

  27. Weller S, Faili A, Garcia C, et al (2001) CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci USA 98:1166

    Google Scholar 

  28. Cocca BA, Seal SN, D’Agnillo P, et al (2001) Structural basis for autoantibody recognition of phosphatidylserine-beta 2 glycoprotein I and apoptotic cells. Proc Natl Acad Sci USA 98:13826

    Google Scholar 

  29. Potter KN, Li YC, Capra JD (1994) The cross-reactive idiotopes recognized by the monoclonal antibodies 9G4 and LC1 are located in framework region 1 of two non-overlapping subsets of human VH4 family encoded antibodies. Scand J Immunol 40:43

    Google Scholar 

  30. Potter KN, Hobby P, Klijn S, et al (2002) Evidence for involvement of a hydrophobic patch in framework region 1 of human V4-34-encoded Igs in recognition of the red blood cell I antigen. J Immunol 169:3777

    Google Scholar 

  31. Zheng NY, Wilson K, Wang X, et al (2004) Human immunoglobulin selection associated with class switch and possible tolerogenic origins for C delta class-switched B cells. J Clin Invest 113:1188

    Google Scholar 

  32. Mockridge CI, Rahman A, Buchan S, et al (2004) Common patterns of B cell perturbation and expanded V4-34 immunoglobulin gene usage in autoimmunity and infection. Autoimmunity 37:9

    Google Scholar 

  33. Chapman CJ, Spellerberg MB, Smith GA, et al (1993) Autoanti-red cell antibodies synthesized by patients with infectious mononucleosis utilize the VH4-21 gene segment. J Immunol 151:1051

    Google Scholar 

  34. Cappione AJ, Pugh-Bernard AE, Anolik JH, et al (2004) Lupus IgG VH4.34 antibodies bind to a 220-kDa glycoform of CD45/B220 on the surface of human B lymphocytes. J Immunol 172:4298

    Google Scholar 

  35. Stevenson FK, Smith GJ, North J, et al (1989) Identification of normal B-cell counterparts of neoplastic cells which secrete cold agglutinins of anti-I and anti-i specificity. Br J Haematol 72:9

    Google Scholar 

  36. Chapman C, Spellerberg M, Hamblin T, et al (1995) Pattern of usage of the VH4-21 gene by B lymphocytes in a patient with EBV infection indicates ongoing mutation and class switching. Ann N Y Acad Sci 764:195

    Google Scholar 

  37. Silberstein LE, Jefferies LC, Goldman J, et al (1991) Variable region gene analysis of pathologic human autoantibodies to the related i and I red blood cell antigens. Blood 78:2372

    Google Scholar 

  38. Pascual V, Victor K, Spellerberg M, et al (1992) VH restriction among human cold agglutinins. The VH4-21 gene segment is required to encode anti-I and anti-i specificities. J Immunol 149:2337

    Google Scholar 

  39. Parr TB, Johnson TA, Silberstein LE, et al (1994) Anti-B cell autoantibodies encoded by VH 4-21 genes in human fetal spleen do not require in vivo somatic selection. Eur J Immunol 24:2941

    Google Scholar 

  40. Li Y, Spellerberg MB, Stevenson FK, et al (1996) The I binding specificity of human VH 4-34 (VH 4-21) encoded antibodies is determined by both VH framework region 1 and complementarity determining region 3. J Mol Biol 256:577

    Google Scholar 

  41. Schutte ME, Es JH van, Silberstein LE, et al (1993) VH4.21-encoded natural autoantibodies with anti-i specificity mirror those associated with cold hemagglutinin disease. J Immunol 151:6569

    Google Scholar 

  42. Andris JS, Miller AB, Abraham SR, et al (1997) Variable region gene segment utilization in rhesus monkey hybridomas producing human red blood cell-specific antibodies: predominance of the VH4 family but not VH4-21 (V4-34). Mol Immunol 34:237

    Google Scholar 

  43. Sanz I, Hwang LY, Hasemann C, et al (1988) Polymorphisms of immunologically relevant loci in human disease. Autoimmunity and human heavy chain variable regions. Ann N Y Acad Sci 546:133

    Google Scholar 

  44. Williams C, Weigel L, Sanz I, et al (1991) Small human VH gene families show remarkably little polymorphism. In: Cazenave P (ed) Anti-idiotypic vaccines. Progress in vaccinology. Springer, New York, p 22

  45. van Dijk KW, Sasso EH, Milner EC (1991) Polymorphism of the human Ig VH4 gene family. J Immunol 146:3646

    Google Scholar 

  46. Weng NP, Snyder JG, Yu-Lee LY, et al (1992) Polymorphism of human immunoglobulin VH4 germ-line genes. Eur J Immunol 22:1075

    Google Scholar 

  47. Wang H, Clarke SH (2004) Positive selection focuses the VH12 B-cell repertoire towards a single B1 specificity with survival function. Immunol Rev 197:51

    Google Scholar 

  48. Eda S, Yamanaka M, Beppu M (2004) Carbohydrate-mediated phagocytic recognition of early apoptotic cells undergoing transient capping of CD43 glycoprotein. J Biol Chem 279:5967

    Google Scholar 

  49. Feizi T, Monger E (1967) Search for I antigen in human tissues. Nature 216:1025

    Google Scholar 

  50. Feizi T (1973) Immunochemical studies of mammalian glycoproteins with blood group I activity. Clin Sci Mol Med 45:17P

    Google Scholar 

  51. Feizi T, Turberville C, Westwood JH (1975) Blood-group precursors and cancer-related antigens. Lancet II:391

    Google Scholar 

  52. Feizi T (1978) The I and i antigens on certain normal and pathologic tissues. Rev Fran Trans Immuno-Hematol 21:165

    Google Scholar 

  53. Feizi T (1981) The blood group Ii system: a carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man. Immunol Commun 10:127

    Google Scholar 

  54. Thompson KM, Sutherland J, Barden G, et al (1991) Human monoclonal antibodies against blood group antigens preferentially express a VH4-21 variable region gene-associated epitope. Scand J Immunol 34:509

    Google Scholar 

  55. Pascual V, Victor K, Lelsz D, et al (1991) Nucleotide sequence analysis of the V regions of two IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the major cross-reactive idiotype. J Immunol 146:4385

    Google Scholar 

  56. Grillot-Courvalin C, Brouet JC, Piller F, et al (1992) An anti-B cell autoantibody from Wiskott-Aldrich syndrome which recognizes i blood group specificity on normal human B cells. Eur J Immunol 22:1781

    Google Scholar 

  57. Smith G, Spellerberg M, Boulton F, et al (1995) The immunoglobulin VH gene, VH4-21, specifically encodes autoanti-red cell antibodies against the I or i antigens. Vox Sanguinis 68:231

    Google Scholar 

  58. Silberstein LE, George A, Durdik JM, et al (1996) The V4-34 encoded anti-i autoantibodies recognize a large subset of human and mouse B-cells. Blood Cells Mol Dis 22:126

    Google Scholar 

  59. Thomas MD, Clough K, Melamed MD, et al (1999) A human monoclonal antibody encoded by the V4-34 gene segment recognises melanoma-associated ganglioside via CDR3 and FWR1. Hum Antibodies 9:95

    Google Scholar 

  60. Bhat NM, Bieber MM, Spellerberg MB, et al (2000) Recognition of auto- and exoantigens by V4-34 gene encoded antibodies. Scand J Immunol 51:134

    Google Scholar 

  61. Stevenson FK, Longhurst C, Chapman CJ, et al (1993) Utilization of the VH4-21 gene segment by anti-DNA antibodies from patients with systemic lupus erythematosus. J Autoimmun 6:809

    Google Scholar 

  62. Thorpe SJ, Turner CE, Stevenson FK, et al (1998) Human monoclonal antibodies encoded by the V4-34 gene segment show cold agglutinin activity and variable multireactivity which correlates with the predicted charge of the heavy-chain variable region. Immunology 93:129

    Google Scholar 

  63. Bhat NM, Bieber MM, Chapman CJ, et al (1993) Human antilipid A monoclonal antibodies bind to human B cells and the i antigen on cord red blood cells. J Immunol 151:5011

    Google Scholar 

  64. Spellerberg MB, Chapman CJ, Mockridge CI, et al (1995) Dual recognition of lipid A and DNA by human antibodies encoded by the VH4-21 gene: a possible link between infection and lupus. Hum Antibodies Hybridomas 6:52

    Google Scholar 

  65. Bieber MM, Bhat NM, Teng NN (1995) Anti-endotoxin human monoclonal antibody A6H4C5 (HA-1A) utilizes the VH4.21 gene. Clin Infect Dis 21:S186

    Google Scholar 

  66. Steinberg AD, Gourley MF, Klinman DM, et al (1991) NIH conference. Systemic lupus erythematosus. Ann Intern Med 115:548

    Google Scholar 

  67. Krieg AM (1995) CpG DNA: a pathogenic factor in systemic lupus erythematosus? J Clin Immunol 15:284

    Google Scholar 

  68. Ronnblom L, Alm GV (2001) An etiopathogenic role for the type I IFN system in SLE. Trends Immunol 22:427

    Google Scholar 

  69. Isenberg D, Spellerberg M, Williams W, et al (1993) Identification of the 9G4 idiotope in systemic lupus erythematosus. Br J Rheumatol 32:876

    Google Scholar 

  70. Isenberg DA, McClure C, Farewell V, et al (1998) Correlation of 9G4 idiotope with disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis 57:566

    Google Scholar 

  71. Vollenhoven RF van, Bieber MM, Powell MJ, et al (1999) VH4-34 encoded antibodies in systemic lupus erythematosus: a specific diagnostic marker that correlates with clinical disease characteristics. J Rheumatol 26:1727

    Google Scholar 

  72. Feizi T, Taylor-Robinson D (1967) Cold agglutinin anti-I and Mycoplasma pneumoniae. Immunology 13:405

    Google Scholar 

  73. Loomes LM, Uemura K, Childs RA, et al (1984) Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type. Nature 307:560

    Google Scholar 

  74. Pugh-Bernard AE, Cappione A, Anolik J, et al (2004) From cold-agglutinin disease to systemic lupus erythematosus: lessons in human B-cell tolerance and Its breakdown. Trans Med Hemother 31:84

    Google Scholar 

  75. Ciaffoni S, Luzzati R, Roata C, et al (1992) Presence and significance of cold agglutinins in patients with HIV infection. Haematologica 77:233

    Google Scholar 

  76. Riboldi P, Gaidano G, Schettino EW, et al (1994) Two acquired immunodeficiency syndrome-associated Burkitt’s lymphomas produce specific anti-i IgM cold agglutinins using somatically mutated VH4-21 segments. Blood 83:2952

    Google Scholar 

  77. Bhat NM, Lee LM, Vollenhoven RV, et al (2002) VH4-34 encoded antibody in systemic lupus erythematosus: effect of isotype. J Rheumatol 29:2114

    Google Scholar 

  78. Rincon I del, Zeidel M, Rey E, et al (2000) Delineation of the human systemic lupus erythematosus anti-smith antibody response using phage-display combinatorial libraries. J Immunol 165:7011

    Google Scholar 

  79. Bhat NM, Bieber MM, Stevenson FK, et al (1996) Rapid cytotoxicity of human B lymphocytes induced by VH4-34 (VH4.21) gene-encoded monoclonal antibodies. Clin Exp Immunol 105:183

    Google Scholar 

  80. Bleesing JJ, Brown MR, Novicio C, et al (2002) A composite picture of TCRalpha/beta(+) CD4(-)CD8(-) T cells (alpha/beta-DNTCs) in humans with autoimmune lymphoproliferative syndrome. Clin Immunol 104:21

    Google Scholar 

  81. Bave U, Alm GV, Ronnblom L (2000) The Combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J Immunol 165:3519

    Google Scholar 

  82. Blanco P, Palucka AK, Gill M, et al (2001) Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:1540

    Google Scholar 

  83. Majeti R, Xu Z, Parslow TG, et al (2000) An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103:1059

    Google Scholar 

  84. Cyster JG, Healy JI, Kishihara K, et al (1996) Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381:325

    Google Scholar 

  85. Williams GW, Bluestein HG, Steinberg AD (1981) Brain-reactive lymphocytotoxic antibody in the cerebrospinal fluid of patients with systemic lupus erythematosus: correlation with central nervous system involvement. Clin Immunol Immunopathol 18:126

  86. Kraj P, Rao SP, Glas AM, et al (1997) The human heavy chain Ig V region gene repertoire is biased at all stages of B cell ontogeny, including early pre-B cells. J Immunol 158:5824

    Google Scholar 

  87. Pascual V, Widhopf G, Capra JD (1992) The human VH repertoire: a restricted set of VH genes may be the target of immune regulation. Int Rev Immunol 8:147

    Google Scholar 

  88. Cappione A, Anolik J, Zheng B, et al (2003) Attenuation of B cell receptor signaling in human autoreactive B cells. Implications for SLE. Arthritis Rheum 48:S270

    Google Scholar 

  89. Goodnow CC, Cyster JG, Hartley SB, et al (1995) Self-tolerance checkpoints in B lymphocyte development. Adv Immunol 59:279

    Google Scholar 

  90. Brunswick M, June CH, Finkelman FD, et al (1989) Surface immunoglobulin-mediated B-cell activation in the absence of detectable elevations in intracellular ionized calcium: a model for T-cell-independent B-cell activation. Proc Natl Acad Sci USA 86:6724

    Google Scholar 

  91. Anolik J, Cappione A, Sanz I (2002) Biochemical and DNA microarray analysis of BCR-mediated signaling in a population of autoreactive human B-lymphocytes. Arthritis Rheum 46:S588

    Google Scholar 

  92. Healy JI, Dolmetsch RE, Lewis RS, et al (1998) Quantitative and qualitative control of antigen receptor signalling in tolerant B lymphocytes. Novartis Found Symp 215:137

    Google Scholar 

  93. Vora KA, Wang LC, Rao SP, et al (2003) Cutting edge: Germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function. J Immunol 171:547

    Google Scholar 

  94. Rahman ZS, Rao SP, Kalled SL, et al (2003) Normal induction but attenuated progression of germinal center responses in BAFF and BAFF-R signaling-deficient mice. J Exp Med 198:1157

    Google Scholar 

  95. Seo SJ, Fields ML, Buckler JL, et al (2002) The impact of T helper and T regulatory cells on the regulation of anti-double-stranded DNA B cells. Immunity 16:535

    Google Scholar 

  96. Rathmell JC, Cooke MP, Ho WY, et al (1995) CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+ T cells. Nature 376:181

    Google Scholar 

  97. Sobel ES, Katagiri T, Katagiri K, et al (1991) An intrinsic B cell defect is required for the production of autoantibodies in the lpr model of murine systemic autoimmunity. J Exp Med 173:1441

    Google Scholar 

  98. James JA, Neas BR, Moser KL, et al (2001) Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum 44:1122

    Google Scholar 

  99. Leadbetter EA, Rifkin IR, Marshak-Rothstein A (2003) Toll-like receptors and activation of autoreactive B cells. Curr Dir Autoimmun 6:105

    Google Scholar 

  100. Pascual V, Banchereau J, Palucka AK (2003) The central role of dendritic cells and interferon-alpha in SLE. Curr Opin Rheumatol 15:548

    Google Scholar 

  101. Gross JA, Johnston J, Mudri S, et al (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404:995

    Google Scholar 

  102. Zhou T, Zhang J, Carter R, et al (2003) BLyS and B cell autoimmunity. Curr Dir Autoimmun 6:21

    Google Scholar 

  103. Pugh-Bernard A, Hocknell K, Cappione A, et al (2002) VH4-34 anti-I/i autoantibodies recognize apoptotic cells. Arthritis Rheum 46:S126

    Google Scholar 

  104. Devitt A, Moffatt OD, Raykundalia C, et al (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392:505

    Google Scholar 

  105. Chan VW, Mecklenbrauker I, Su I, et al (1998) The molecular mechanism of B cell activation by toll-like receptor protein RP-105. J Exp Med 188:93

    Google Scholar 

  106. Miura Y, Shimazu R, Miyake K, et al (1998) RP105 is associated with MD-1 and transmits an activation signal in human B cells. Blood 92:2815

    Google Scholar 

  107. Feizi T (1980) Structural and biological aspects of blood group I and i antigens on glycolipids and glycoproteins. Rev Franc Trans Immuno-Hematol 23:563

    Google Scholar 

  108. Shinkai K, Locksley RM (2000) CD1, tuberculosis, and the evolution of major histocompatibility complex molecules. J Exp Med 191:907

    Google Scholar 

  109. Sieling PA, Chatterjee D, Porcelli SA, et al (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227

    Google Scholar 

  110. Shamshiev A, Donda A, Carena I, et al (1999) Self glycolipids as T-cell autoantigens. Eur J Immunol 29:1667

    Google Scholar 

  111. Sugita M, Brenner MB (2000) T lymphocyte recognition of human group 1 CD1 molecules: implications for innate and acquired immunity. Semin Immunol 12:511

    Google Scholar 

  112. Prendergast MM, Lastovica AJ, Moran AP (1998) Lipopolysaccharides from Campylobacter jejuni O:41 strains associated with Guillain-Barre syndrome exhibit mimicry of GM1 ganglioside. Infect Immun 66:3649

    Google Scholar 

  113. Brossay L, Chioda M, Burdin N, et al (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188:1521

    Google Scholar 

  114. D’Andrea A, Goux D, De Lalla C, et al (2000) Neonatal invariant Valpha24+ NKT lymphocytes are activated memory cells. Eur J Immunol 30:1544

    Google Scholar 

  115. Benlagha K, Bendelac A (2000) CD1d-restricted mouse V alpha 14 and human V alpha 24 T cells: lymphocytes of innate immunity. Semin Immunol 12:537

    Google Scholar 

  116. Park SH, Benlagha K, Lee D, et al (2000) Unaltered phenotype, tissue distribution and function of Valpha14(+) NKT cells in germ-free mice. Eur J Immunol 30:620

    Google Scholar 

  117. Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD48 T lymphocytes to a microbial antigen. Nature 360:593

    Google Scholar 

  118. Gumperz JE, Brenner MB (2001) CD1-specific T cells in microbial immunity. Curr Opin Immunol 13:471

    Google Scholar 

  119. Zeng D, Dick M, Cheng L, et al (1998) Subsets of transgenic T cells that recognize CD1 induce or prevent murine lupus: role of cytokines. J Exp Med 187:525

    Google Scholar 

  120. Kawano T, Nakayama T, Kamada N, et al (1999) Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res 59:5102

    Google Scholar 

  121. Sharif S, Arreaza GA, Zucker P, et al (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 7:1057

    Google Scholar 

  122. Singh AK, Wilson MT, Hong S, et al (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194:1801

    Google Scholar 

  123. Chan OT, Hannum LG, Haberman AM, et al (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189:1639

    Google Scholar 

  124. Mohan C, Morel L, Yang P, et al (1998) Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis Rheum 41:1652

    Google Scholar 

  125. Oliver AM, Martin F, Kearney JF (1999) IgM(high)CD21(high) lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol 162:7198

    Google Scholar 

  126. Datta SK, Patel H, Berry D (1987) Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis. J Exp Med 165:1252

    Google Scholar 

  127. Shivakumar S, Tsokos GC, Datta SK (1989) T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J Immunol 143:103

    Google Scholar 

  128. Porcelli S, Yockey CE, Brenner MB, et al (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178:1

    Google Scholar 

  129. Devi BS, Van Noordin S, Krausz T, et al (1998) Peripheral blood lymphocytes in SLE—hyperexpression of CD154 on T and B lymphocytes and increased number of double negative T cells. J Autoimmun 11:471

    Google Scholar 

  130. Zeng D, Lee MK, Tung J, et al (2000) Cutting edge: A role for CD1 in the pathogenesis of lupus in NZB/NZW mice. J Immunol 164:5000

    Google Scholar 

  131. Straus SE, Sneller M, Lenardo MJ, et al (1999) An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med 130:591

    Google Scholar 

  132. Anolik J, Barnard J, Cappione A, Pugh-Bernard A, Felger R, Looney J, Sanz I (2004) Rituximab normalizes peripheral B-cell abnormalities in SLE. Arthritis Rheum (in press)

Download references

Acknowledgements

This work was supported in part by grants to J.A. (NIAMS K08AR048303 and the Lupus Foundation of America) and I.S. (RO1 AI049660-01A1 and U19 AI56390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñaki Sanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milner, E.C.B., Anolik, J., Cappione, A. et al. Human innate B cells: a link between host defense and autoimmunity?. Springer Semin Immun 26, 433–452 (2005). https://doi.org/10.1007/s00281-004-0188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-004-0188-9

Keywords

Navigation