Skip to main content

Advertisement

Log in

Differential tumor inhibitory effects induced by HER3 extracellular subdomain-specific mouse monoclonal antibodies

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The therapeutic potential of targeting the human epidermal growth factor receptor-3 (ErbB3/HER3) has long been ignored due to impaired tyrosine kinase function and low expression level in tumor cells compared with EGFR and HER2. Although recent investigations have explored the potential benefit of HER3 targeting and several anti-HER3 agents have been developed, there is still a critical need to design and produce more efficient therapeutics. This study was designed to develop tumor inhibitory monoclonal antibodies (MAbs) against different extracellular subdomains of HER3.

Methods

Distinct extracellular subdomains of HER3 (DI+II and DIII+IV) were utilized to produce MAbs by hybridoma technology. Biochemical and functional characteristics of these MAbs were then investigated by various methodologies, including immunoblotting, flow cytometry, cell proliferation, cell signaling, and enzyme-linked immunosorbent assays.

Results

Four anti-DI+II and six anti-DIII+IV MAbs were obtained, selected based on their ability to bind recombinant full HER3 extracellular domain (ECD). Our data showed that only one anti-DI+II and four anti-DIII+IV MAbs recognized the native form of HER3 by immunoblotting. Four MAbs recognized the membranous HER3 by flow cytometry leading to induction of different levels of receptor internalization and subsequent degradation. Results of cell proliferation assays using these MAbs indicated that they differentially inhibited proliferation of HER3-expressing cancer cells and showed considerable synergistic effects in combination with trastuzumab. Selected MAb with the highest inhibitory effect significantly inhibited the phosphorylation of AKT and ERK1/2 molecules.

Conclusion

Some of the anti-HER3 MAbs produced in this study displayed tumor inhibitory function and may be considered promising candidates for future HER3-targeted cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65(10):1566–1584. https://doi.org/10.1007/s00018-008-7440-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT (2018) HER3 signaling and targeted therapy in cancer. Oncol Rev 12(1):45–62. https://doi.org/10.4081/oncol.2018.355

    Article  CAS  Google Scholar 

  3. Gala K, Chandarlapaty S (2014) Molecular pathways: HER3 targeted therapy. Clin Cancer Res 20(6):1410–1416. https://doi.org/10.1158/1078-0432.CCR-13-1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kol A, Terwisscha van Scheltinga AGT, Timmer-Bosscha H, Lamberts LE, Bensch F, de Vries EGE, Schröder CP (2014) HER3, serious partner in crime: therapeutic approaches and potential biomarkers for effect of HER3-targeting. Pharmacol Ther 143(1):1–11. https://doi.org/10.1016/j.pharmthera.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  5. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ErbB2 and discovering ErbB3. Nat Rev Cancer 9(7):463–475. https://doi.org/10.1038/nrc2656

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Xu B (2019) Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 4(1):1–22. https://doi.org/10.1038/s41392-019-0069-2

    Article  Google Scholar 

  7. Oh DY, Bang YJ (2020) HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol 17(1):33–48. https://doi.org/10.1038/s41571-019-0268-3

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Xu B (2019) Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 4:1–22. https://doi.org/10.1038/s41392-019-0069-2

    Article  Google Scholar 

  9. Campbell MR, Amin D, Moasser MM (2010) HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res 16(5):1373–1383. https://doi.org/10.1158/1078-0432.CCR-09-1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lyu H, Han A, Polsdofer E, Liu S, Liu B (2018) Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm Sin B 8(4):503–510. https://doi.org/10.1016/j.apsb.2018.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karachaliou N, Lazzari C, Verlicchi A, Sosa AE, Rosell R (2017) HER3 as a therapeutic target in cancer. BioDrugs 31(1):63–73. https://doi.org/10.1007/s40259-016-0205-2

    Article  CAS  PubMed  Google Scholar 

  12. Haikala HM, Jänne PA (2021) Thirty years of HER3: from basic biology to therapeutic interventions. Clin Cancer Res 27(13):3528–3539. https://doi.org/10.1158/1078-0432.CCR-20-4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacob W, James I, Hasmann M, Weisser M (2018) Clinical development of HER3-targeting monoclonal antibodies: perils and progress. Cancer Treat Rev 68:111–123. https://doi.org/10.1016/j.ctrv.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  14. Mansouri-Fard S, Ghaedi M, Shokri MR, Bahadori T, Khoshnoodi J, Golsaz-Shirazi F, Jeddi-Tehrani M et al (2020) Inhibitory effect of polyclonal antibodies against HER3 extracellular subdomains on breast cancer cell lines. Asian Pac J Cancer Prev 21(2):439–447. https://doi.org/10.31557/APJCP.2020.21.2.439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hassani D, Amiri MM, Mohammadi M, Yousefi P, Judaki MA, Mobini M, Golsaz-Shirazi F et al (2021) A novel tumor inhibitory hybridoma monoclonal antibody with dual specificity for HER3 and HER2. Curr Res Transl Med 69(2):1–9. https://doi.org/10.1016/j.retram.2021.103277

    Article  Google Scholar 

  16. Kazemi T, Tahmasebi F, Bayat AA, Mohajer N, Khoshnoodi J, Jeddi-Tehrani M, Rabbani H et al (2011) Characterization of novel murine monoclonal antibodies directed against the extracellular domain of human HER2 tyrosine kinase receptor. Hybridoma 30(4):347–353

    Article  CAS  Google Scholar 

  17. Beatty JD, Beatty BG, Vlahos WG (1987) Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 100(1–2):173–179. https://doi.org/10.1016/0022-1759(87)90187-6

    Article  CAS  PubMed  Google Scholar 

  18. Hajighasemi F, Saboor-Yaraghi AA, Shokri F (2004) Measurement of affinity constant of anti-human IgG monoclonal antibodies by an ELISA-based method. Iran J Immunol 1(3):154–161

    Google Scholar 

  19. Maadi H, Soheilifar MH, Choi W-S, Moshtaghian A, Wang Z (2021) Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers 13(14):1–17. https://doi.org/10.3390/cancers13143540

    Article  CAS  Google Scholar 

  20. Blackburn E, Zona S, Murphy ML, Brown IR, Chan SKW, Gullick WJ (2012) A monoclonal antibody to the human HER3 receptor inhibits neuregulin 1-beta binding and co-operates with Herceptin in inhibiting the growth of breast cancer derived cell lines. Breast Cancer Res Treat 134(1):53–59. https://doi.org/10.1007/s10549-011-1908-1

    Article  CAS  PubMed  Google Scholar 

  21. Tanner M, Kapanen AI, Junttila T, Raheem O, Grenman S, Elo J, Elenius K et al (2004) Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer. Mol Cancer Ther 3(12):1585–1592

    CAS  PubMed  Google Scholar 

  22. Shu M, Yan H, Xu C, Wu Y, Chi Z, Nian W, He Z et al (2020) A novel anti-HER2 antibody GB235 reverses trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-59818-2

    Article  CAS  Google Scholar 

  23. Gaborit N, Abdul-Hai A, Mancini M, Lindzen M, Lavi S, Leitner O, Mounier L et al (2015) Examination of HER3 targeting in cancer using monoclonal antibodies. Proc Natl Acad Sci USA 112(3):839–844. https://doi.org/10.1073/pnas.1423645112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Köninki K, Barok M, Tanner M, Staff S, Pitkänen J, Hemmilä P, Ilvesaro J et al (2010) Multiple molecular mechanisms underlying trastuzumab and lapatinib resistance in JIMT-1 breast cancer cells. Cancer Lett 294(2):211–219. https://doi.org/10.1016/j.canlet.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  25. Arteaga CL, Engelman JA (2014) ErbB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25(3):282–303. https://doi.org/10.1016/j.ccr.2014.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masoud V, Pagès G (2017) Targeted therapies in breast cancer: new challenges to fight against resistance. World J Clin Oncol 8(2):120–134. https://doi.org/10.5306/wjco.v8.i2.120

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hafeez U, Parslow AC, Gan HK, Scott AM (2020) New insights into ErbB3 function and therapeutic targeting in cancer. Expert Rev Anticancer Ther 20(12):1057–1074. https://doi.org/10.1080/14737140.2020.1829485

    Article  CAS  PubMed  Google Scholar 

  28. Black LE, Longo JF, Carroll SL (2019) Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia. Am J Pathol 189(10):1898–1912. https://doi.org/10.1016/j.ajpath.2019.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okita K, Okazaki S, Uejima S, Yamada E, Kaminaka H, Kondo M, Ueda S et al (2020) Novel functional anti-HER3 monoclonal antibodies with potent anti-cancer effects on various human epithelial cancers. Oncotarget 11(1):31–45. https://doi.org/10.18632/oncotarget.27414

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schmitt LC, Rau A, Seifert O, Honer J, Hutt M, Schmid S, Zantow J et al (2017) Inhibition of HER3 activation and tumor growth with a human antibody binding to a conserved epitope formed by domain III and IV. MAbs 9(5):831–843. https://doi.org/10.1080/19420862.2017.1319023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thakkar D, Sancenon V, Taguiam MM, Guan S, Wu Z, Ng E, Paszkiewicz KH et al (2020) 10D1F, an anti-HER3 antibody that uniquely blocks the receptor heterodimerization interface, potently inhibits tumor growth across a broad panel of tumor models. Mol Cancer Ther 19(2):490–501. https://doi.org/10.1158/1535-7163.MCT-19-0515

    Article  CAS  PubMed  Google Scholar 

  32. Li Q, Yuan Z, Cao B (2013) The function of human epidermal growth factor receptor-3 and its role in tumors. Oncol Rep 30(6):2563–2570. https://doi.org/10.3892/or.2013.2754

    Article  CAS  PubMed  Google Scholar 

  33. Jiang N, Saba NF, Chen ZG (2012) Advances in targeting HER3 as an anticancer therapy. Chemother Res Pract 2012:1–9. https://doi.org/10.1155/2012/817304

    Article  Google Scholar 

  34. Ferraro DA, Gaborit N, Maron R, Cohen-Dvashi H, Porat Z, Pareja F, Lavi S et al (2013) Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci USA 110(5):1815–1820. https://doi.org/10.1073/pnas.1220763110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Iida M, Brand TM, Starr MM, Li C, Huppert EJ, Luthar N, Pedersen MW et al (2013) Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab. Neoplasia 15(10):1196–1206. https://doi.org/10.1593/neo.131584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ben-Kasus T, Schechter B, Lavi S, Yarden Y, Sela M (2009) Persistent elimination of ErbB2-/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA 106(9):3294–3299. https://doi.org/10.1073/pnas.0812059106

    Article  PubMed  PubMed Central  Google Scholar 

  37. Soltantoyeh T, Bahadori T, Hosseini-Ghatar R, Khoshnoodi J, Roohi A, Mobini M, Golsaz-Shirazi F et al (2018) Differential effects of inhibitory and stimulatory anti-HER2 monoclonal antibodies on AKT/ERK signaling pathways. Asian Pac J Cancer Prev 19(8):2255–2262. https://doi.org/10.22034/APJCP.2018.19.8.2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaborit N, Lindzen M, Yarden Y (2016) Emerging anti-cancer antibodies and combination therapies targeting HER3/ErbB3. Hum Vaccin Immunother 12(3):576–592. https://doi.org/10.1080/21645515.2015.1102809

    Article  PubMed  Google Scholar 

  39. Mishra R, Alanazi S, Yuan L, Solomon T, Thaker TM, Jura N, Garrett JT (2018) Activating HER3 mutations in breast cancer. Oncotarget 9(45):27773–27788. https://doi.org/10.18632/oncotarget.25576

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kiavue N, Cabel L, Melaabi S, Bataillon G, Callens C, Lerebours F, Pierga J-Y et al (2020) ErbB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene 39(3):487–502. https://doi.org/10.1038/s41388-019-1001-5

    Article  CAS  PubMed  Google Scholar 

  41. Almeida JG, Preto AJ, Koukos PI, Bonvin AMJJ, Moreira IS (2017) Membrane proteins structures: a review on computational modeling tools. Biochim Biophys Acta Biomembr 1859(10):2021–2039. https://doi.org/10.1016/j.bbamem.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  42. Hatano R, Yamada T, Madokoro H, Otsuka H, Komiya E, Itoh T, Narita Y et al (2019) Development of novel monoclonal antibodies with specific binding affinity for denatured human CD26 in formalin-fixed paraffin-embedded and decalcified specimens. PLoS ONE 14(6):1–19. https://doi.org/10.1371/journal.pone.0218330

    Article  CAS  Google Scholar 

  43. Revelen R, D Arbonneau F, Guillevin L, Bordron A, Youinou P, Dueymes M (2002) Comparison of cell-ELISA, flow cytometry and Western blotting for the detection of antiendothelial cell antibodies. Clin Exp Rheumatol 20(1):19–26

    CAS  PubMed  Google Scholar 

  44. Stravinskiene D, Sliziene A, Baranauskiene L, Petrikaite V, Zvirbliene A (2020) Inhibitory monoclonal antibodies and their recombinant derivatives targeting surface-exposed carbonic anhydrase XII on cancer cells. Int J Mol Sci 21(24):1–26. https://doi.org/10.3390/ijms21249411

    Article  CAS  Google Scholar 

  45. Hashimoto Y, Koyama K, Kamai Y, Hirotani K, Ogitani Y, Zembutsu A, Abe M et al (2019) A novel HER3-targeting antibody–drug conjugate, U3–1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin Cancer Res 25(23):7151–7161. https://doi.org/10.1158/1078-0432.CCR-19-1745

    Article  CAS  PubMed  Google Scholar 

  46. Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, Sineshchekova O et al (2013) An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res 73(19):6024–6035. https://doi.org/10.1158/0008-5472.CAN-13-1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lazrek Y, Dubreuil O, Garambois V, Gaborit N, Larbouret C, Le Clorennec C, Thomas G et al (2013) Anti-HER3 domain 1 and 3 antibodies reduce tumor growth by hindering HER2/HER3 dimerization and AKT-induced MDM2, XIAP, and FoxO1 phosphorylation. Neoplasia 15(3):335–347. https://doi.org/10.1593/neo.121960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B (2019) Development of effective therapeutics targeting HER3 for cancer treatment. Biol Proced Online 21:1–10. https://doi.org/10.1186/s12575-019-0093-1

    Article  Google Scholar 

  49. Maadi H, Nami B, Tong J, Li G, Wang Z (2018) The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2. BMC Cancer 18(1):1–14. https://doi.org/10.1186/s12885-018-4143-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mohammad Ali Judaki and Akram Sadat Majidian for technical support. This study was partially supported by the National Institute for Medical Research Development of Iran (NIMAD) under Grant number 971145 and Tehran University of Medical Sciences (TUMS) under Grant number 41447.

Funding

This study was partially supported by the National Institute for Medical Research Development of Iran (NIMAD) under Grant number 971145 and Tehran University of Medical Sciences (TUMS) under Grant number 41447.

Author information

Authors and Affiliations

Authors

Contributions

DH: contributed to the experimental design, performance of the experiments, acquisition, analysis, and interpretation of data, and writing the manuscript. MJT: contributed to the study conceptualization and reviewing and revising the manuscript. PY: contributed to the performance of cell fusion experiments. SMF: contributed to the performance of the purification experiments. MM: contributed to the performance of the flow cytometry experiments and analysis of data. HAZ: contributed to the performance of the serological experiments. FGS: contributed to the experimental design and reviewing and revising the manuscript. MMA: contributed to the study conceptualization, project administration, experimental design, and reviewing and revising the manuscript. FS: contributed to the study conceptualization, project administration, experimental design, analysis and interpretation of data, and reviewing and revising the manuscript.

Corresponding authors

Correspondence to Mohammad Mehdi Amiri or Fazel Shokri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Mice were housed and handled in accordance with all applicable international and/or institutional guidelines concerning the care and use of laboratory animals. All experiments involving animal use were approved by the research ethics committee of Tehran University of Medical Sciences (Code: IR.TUMS.SPH.REC.1397.320).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 90 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, D., Jeddi-Tehrani, M., Yousefi, P. et al. Differential tumor inhibitory effects induced by HER3 extracellular subdomain-specific mouse monoclonal antibodies. Cancer Chemother Pharmacol 89, 347–361 (2022). https://doi.org/10.1007/s00280-021-04390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04390-3

Keywords

Navigation