Skip to main content
Log in

A systematic review of inter-individual differences in the DNA repair processes involved in melphalan monoadduct repair in relation to treatment outcomes

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Melphalan is a bifunctional alkylating agent that elicits its cytotoxic activity by rapidly forming an initial DNA monoadduct, which then produces an inter-strand crosslink. Most studies exploring the role of inherited differences in DNA repair and melphalan outcomes focus on inter-strand crosslink repair, however, monoadduct repair likely plays a key role since it minimises the ultimate production of these crosslinks. The purpose of this systematic review was to assess evidence of an association between variation in monoadduct repair pathways and melphalan response.

Methods

A literature search was undertaken using Medline, Embase, Scopus and PubMed databases. Duplicates were removed and only full-text articles were included. To be included for critique in this systematic review, articles were assessed for relevance using strict inclusion/exclusion criteria.

Results

Fourteen studies were identified that involved patients treated with melphalan, however, in 3, only a minority of the cohort received melphalan. Across the remaining 11 studies, 61 genes/proteins in DNA monoadduct repair pathways were assessed. Both germline SNP (CDKN1A, ERCC1, ERCC2, ERCC4, ERCC6, EXO1, MLH1, MNAT1, MUTYH, PARP4, PCNA, POLE, POLR1G, RAD23B, RFC1, RFC3, RPA1, RPA3, TREX1, UNG, XPC, XRCC1) and somatic expression (CDKN1A, PARP1, PCNA, MGMT, RECQL, RFC5) were associated with melphalan outcomes in ≥ 1 study.

Conclusion

It appears that inherited germline differences in monoadduct repair genes may be a risk factor for poor outcomes. However, the diversity of study design, patient cohorts, genes assessed and lack of replication, preclude any meta-analysis. Further prospective studies are required to validate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data collection spreadsheets can be provided by corresponding author upon request.

References

  1. Medsafe (2006) ALKERAN™ (Melphalan Injection 50mg) data sheet 22. https://www.medsafe.govt.nz/Profs/datasheet/a/Alkeraninj.pdf. Accessed 21 Sept 2020

  2. Medsafe (2006) ALKERAN™ (Melphalan Tablets 2mg) data sheet 22. https://www.medsafe.govt.nz/profs/Datasheet/a/alkerantab.pdf. Accessed 21 Sept 2020

  3. Nath CE, Trotman J, Tiley C, Presgrave P, Joshua D, Kerridge I, Kwan YL, Gurney H, McLachlan AJ, Earl JW (2016) High melphalan exposure is associated with improved overall survival in myeloma patients receiving high dose melphalan and autologous transplantation. Br J Clin Pharmacol 82(1):149–159

    Article  CAS  Google Scholar 

  4. Osborne M, Lawley P (1993) Alkylation of DNA by melphalan with special reference to adenine derivatives and adenine-guanine cross-linking. Chem Biol Interact 89(1):49–60

    Article  CAS  Google Scholar 

  5. Polavarapu A, Stillabower JA, Stubblefield SG, Taylor WM, Baik M-H (2012) The mechanism of guanine alkylation by nitrogen mustards: a computational study. J Org Chem 77(14):5914–5921

    Article  CAS  Google Scholar 

  6. Bauer GB, Povirk LF (1997) Specificity and kinetics of interstrand and intrastrand bifunctional alkylation by nitrogen mustards at a GGC sequence. Nucleic Acids Res 25(6):1211–1218

    Article  CAS  Google Scholar 

  7. Hartley JA, Berardini MD, Souhami RL (1991) An agarose gel method for the determination of DNA interstrand crosslinking applicable to the measurement of the rate of total and “second-arm” crosslink reactions. Anal Biochem 193(1):131–134

    Article  CAS  Google Scholar 

  8. Garcia ST, McQuillan A, Panasci L (1988) Correlation between the cytotoxicity of melphalan and DNA crosslinks as detected by the ethidium bromide fluorescence assay in the F1 variant of B16 melanoma cells. Biochem Pharmacol 37(16):3189–3192

    Article  CAS  Google Scholar 

  9. Hansson J, Lewensohn R, Ringborg U, Nilsson B (1987) Formation and removal of DNA cross-links induced by melphalan and nitrogen mustard in relation to drug-induced cytotoxicity in human melanoma cells. Can Res 47(10):2631–2637

    CAS  Google Scholar 

  10. Gkotzamanidou M, Sfikakis P, Kyrtopoulos S, Bamia C, Dimopoulos M, Souliotis V (2014) Chromatin structure, transcriptional activity and DNA repair efficiency affect the outcome of chemotherapy in multiple myeloma. Br J Cancer 111(7):1293–1304

    Article  CAS  Google Scholar 

  11. Fichtinger-Schepman AMJ, van der Velde-Visser SD, van Dijk-Knijnenburg HC, van Oosterom AT, Baan RA, Berends F (1990) Kinetics of the formation and removal of cisplatin-DNA adducts in blood cells and tumor tissue of cancer patients receiving chemotherapy: comparison with in vitro adduct formation. Can Res 50(24):7887–7894

    CAS  Google Scholar 

  12. Johnstone EC, Lind MJ, Griffin MJ, Boddy AV (2000) Ifosfamide metabolism and DNA damage in tumour and peripheral blood lymphocytes of breast cancer patients. Cancer Chemother Pharmacol 46(6):433–441

    Article  CAS  Google Scholar 

  13. Reed E, Ostchega Y, Steinberg SM, Yuspa SH, Young RC, Ozols RF, Poirier MC (1990) Evaluation of platinum-DNA adduct levels relative to known prognostic variables in a cohort of ovarian cancer patients. Can Res 50(8):2256–2260

    CAS  Google Scholar 

  14. Stefanou DT, Episkopou H, Kyrtopoulos SA, Bamias A, Gkotzamanidou M, Bamia C, Liakou C, Bekyrou M, Sfikakis PP, Dimopoulos MA (2012) Development and validation of a PCR-based assay for the selection of patients more likely to benefit from therapeutic treatment with alkylating drugs. Br J Clin Pharmacol 74(5):842–853

    Article  CAS  Google Scholar 

  15. Dimopoulos MA, Souliotis VL, Anagnostopoulos A, Papadimitriou C, Sfikakis PP (2005) Extent of damage and repair in the p53 tumor-suppressor gene after treatment of myeloma patients with high-dose melphalan and autologous blood stem-cell transplantation is individualized and may predict clinical outcome. J Clin Oncol 23(19):4381–4389

    Article  CAS  Google Scholar 

  16. Souliotis VL, Dimopoulos MA, Sfikakis PP (2003) Gene-specific formation and repair of DNA monoadducts and interstrand cross-links after therapeutic exposure to nitrogen mustards. Clin Cancer Res 9(12):4465–4474

    CAS  PubMed  Google Scholar 

  17. Dimopoulos MA, Souliotis VL, Anagnostopoulos A, Bamia C, Pouli A, Baltadakis I, Terpos E, Kyrtopoulos SA, Sfikakis PP (2007) Melphalan-induced DNA damage in vitro as a predictor for clinical outcome in multiple myeloma. Haematologica 92(11):1505–1512

    Article  CAS  Google Scholar 

  18. Grant DF, Bessho T, Reardon JT (1998) Nucleotide excision repair of melphalan monoadducts. Can Res 58(22):5196–5200

    CAS  Google Scholar 

  19. Sousa MM, Zub KA, Aas PA, Hanssen-Bauer A, Demirovic A, Sarno A, Tian E, Liabakk NB, Slupphaug G (2013) An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells. PLoS ONE 8(2):e55493

    Article  CAS  Google Scholar 

  20. Bohm L (2006) Inhibition of homologous recombination repair with Pentoxifylline targets G2 cells generated by radiotherapy and induces major enhancements of the toxicity of cisplatin and melphalan given after irradiation. Radiat Oncol 1(1):1–8

    Article  Google Scholar 

  21. Chen Q, Van der Sluis PC, Boulware D, Hazlehurst LA, Dalton WS (2005) The FA/BRCA pathway is involved in melphalan-induced DNA interstrand cross-link repair and accounts for melphalan resistance in multiple myeloma cells. Blood 106(2):698–705

    Article  CAS  Google Scholar 

  22. Wang Z-M, Chen Z-P, Xu Z-Y, Christodoulopoulos G, Bello V, Mohr G, Aloyz R, Panasci LC (2001) In vitro evidence for homologous recombinational repair in resistance to melphalan. J Natl Cancer Inst 93(19):1473–1478

    Article  CAS  Google Scholar 

  23. Gkotzamanidou M, Terpos E, Bamia C, Munshi NC, Dimopoulos MA, Souliotis VL (2016) DNA repair of myeloma plasma cells correlates with clinical outcome; the effect of the non-homologous end-joining inhibitor SCR7. Blood 128(9):1214–1225

    Article  CAS  Google Scholar 

  24. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan-a web and mobile app for systematic reviews. Syst Rev 5:210

    Article  Google Scholar 

  25. Guillem VM, Collado M, Terol MJ, Calasanz MJ, Esteve J, Gonzalez M, Sanzo C, Nomdedeu J, Bolufer P, Lluch A (2007) Role of MTHFR (677, 1298) haplotype in the risk of developing secondary leukemia after treatment of breast cancer and hematological malignancies. Leukemia 21(7):1413–1422

    Article  CAS  Google Scholar 

  26. Guillem VM, Arbona C, Hernández-Boluda JC, Terol MJ, Goterris R, Solano C, Tormo M (2011) An XRCC1 polymorphism is associated with the outcome of patients with lymphoma undergoing autologous stem cell transplant. Leuk Lymphoma 52(7):1249–1254. https://doi.org/10.3109/10428194.2011.564694

    Article  CAS  PubMed  Google Scholar 

  27. Cifci S, Yilmaz M, Pehlivan M, Sever T, Okan V, Pehlivan S (2011) DNA repair genes polymorphisms in multiple myeloma: no association with XRCC1 (Arg399Gln) polymorphism, but the XRCC4 (VNTR in intron 3 and G-1394T) and XPD (Lys751Gln) polymorphisms is associated with the disease in Turkish patients. Hematology 16(6):361–367. https://doi.org/10.1179/102453311x13127324303399

    Article  CAS  PubMed  Google Scholar 

  28. Persaud AK, Li J, Johnson JA, Seligson N, Sborov DW, Duah E, Cho YK, Wang D, Phelps MA, Hofmeister CC, Poi MJ (2019) XRCC1-mediated DNA repair is associated with progression-free survival of multiple myeloma patients after autologous stem cell transplant. Mol Carcinog 58(12):2327–2339. https://doi.org/10.1002/mc.23121

    Article  CAS  PubMed  Google Scholar 

  29. Dumontet C, Landi S, Reiman T, Perry T, Plesa A, Bellini I, Barale R, Pilarski LM, Troncy J, Tavtigian S, Gemignani F (2010) Genetic polymorphisms associated with outcome in multiple myeloma patients receiving high-dose melphalan. Bone Marrow Transplant 45(8):1316–1324. https://doi.org/10.1038/bmt.2009.335

    Article  CAS  PubMed  Google Scholar 

  30. Vangsted A, Gimsing P, Klausen TW, Nexø BA, Wallin H, Andersen P, Hokland P, Lillevang ST, Vogel U (2007) Polymorphisms in the genes ERCC2, XRCC3 and CD3EAP influence treatment outcome in multiple myeloma patients undergoing autologous bone marrow transplantation. Int J Cancer 120(5):1036–1045

    Article  CAS  Google Scholar 

  31. Thyagarajan B, Arora M, Guan W, Barcelo H, Jackson S, Kumar S, Gertz M (2013) Genetic variants in DNA repair pathways are not associated with disease progression among multiple myeloma patients. Leuk Res 37(11):1527–1531

    Article  CAS  Google Scholar 

  32. Shinozuka K, Tang H, Jones RB, Li D, Nieto Y (2016) Impact of polymorphic variations of gemcitabine metabolism, DNA damage repair, and drug-resistance genes on the effect of high-dose chemotherapy for relapsed or refractory lymphoid malignancies. Biol Blood Marrow Transplant 22(5):843–849. https://doi.org/10.1016/j.bbmt.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  33. Erickson SW, Stephens OW, Chavan SS, Epstein J, Barlogie B, Heuck CJ, Vangsted AJ (2016) A common genetic variant in 19q13·3 is associated with outcome of multiple myeloma patients treated with Total Therapy 2 and 3. Br J Haematol 174(6):991–993. https://doi.org/10.1111/bjh.13830

    Article  CAS  PubMed  Google Scholar 

  34. Guadagni S, Fiorentini G, Clementi M, Palumbo G, Masedu F, Deraco M, De Manzoni G, Chiominto A, Valenti M, Pellegrini C (2017) MGMT methylation correlates with melphalan pelvic perfusion survival in stage III melanoma patients: a pilot study. Melanoma Res 27(5):439

    Article  CAS  Google Scholar 

  35. Varghese S, Xu H, Bartlett D, Hughes M, Pingpank JF, Beresnev T, Alexander HR (2010) Isolated hepatic perfusion with high-dose melphalan results in immediate alterations in tumor gene expression in patients with metastatic ocular melanoma. Ann Surg Oncol 17(7):1870–1877. https://doi.org/10.1245/s10434-010-0998-z

    Article  PubMed  Google Scholar 

  36. Patel PR, Senyuk V, Sweiss K, Calip GS, Pan D, Rodriguez N, Oh A, Mahmud N, Rondelli D (2020) PARP inhibition synergizes with melphalan but does not reverse resistance completely. Biol Blood Marrow Transplant 26(7):1273–1279. https://doi.org/10.1016/j.bbmt.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  37. Viziteu E, Klein B, Basbous J, Lin Y, Hirtz C, Gourzones C, Tiers L, Bruyer A, Vincent L, Grandmougin C (2017) RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma. Leukemia 31(10):2104–2113

    Article  CAS  Google Scholar 

  38. Yang Z-Z, Chen X-H, Wang D (2007) Experimental study enhancing the chemosensitivity of multiple myeloma to melphalan by using a tissue-specific APE1-silencing RNA expression vector. Clin Lymphoma Myeloma 7(4):296–304

    Article  Google Scholar 

  39. Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I, Todoerti K, Verdelli D, Battaglia C, Bertoni F, Deliliers GL, Neri A (2009) A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosom Cancer 48(7):603–614. https://doi.org/10.1002/gcc.20668

    Article  CAS  PubMed  Google Scholar 

  40. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, Pineda-Roman M, Tricot G, Van Rhee F, Zangari M, Dhodapkar M, Shaughnessy JD (2007) Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 109(4):1692–1700. https://doi.org/10.1182/blood-2006-07-037077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, Van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy JD (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028. https://doi.org/10.1182/blood-2005-11-013458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, Munshi N, Lonial S, Bladé J, Mateos M-V, Dimopoulos M, Kastritis E, Boccadoro M, Orlowski R, Goldschmidt H, Spencer A, Hou J, Chng WJ, Usmani SZ, Zamagni E, Shimizu K, Jagannath S, Johnsen HE, Terpos E, Reiman A, Kyle RA, Sonneveld P, Richardson PG, McCarthy P, Ludwig H, Chen W, Cavo M, Harousseau J-L, Lentzsch S, Hillengass J, Palumbo A, Orfao A, Rajkumar SV, Miguel JS, Avet-Loiseau H (2016) International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 17(8):e328–e346. https://doi.org/10.1016/s1470-2045(16)30206-6

    Article  Google Scholar 

  43. Debnath S, Sharma S (2020) RECQ1 helicase in genomic stability and cancer. Genes 11(6):622

    Article  CAS  Google Scholar 

  44. Woodrick J, Gupta S, Camacho S, Parvathaneni S, Choudhury S, Cheema A, Bai Y, Khatkar P, Erkizan HV, Sami F (2017) A new sub-pathway of long-patch base excision repair involving 5′ gap formation. EMBO J 36(11):1605–1622

    Article  CAS  Google Scholar 

  45. Hose D, Rème T, Hielscher T, Moreaux J, Messner T, Seckinger A, Benner A, Shaughnessy JD, Barlogie B, Zhou Y (2011) Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica 96(1):87–95

    Article  Google Scholar 

  46. Barlogie B, Tricot G, Rasmussen E, Anaissie E, Van Rhee F, Zangari M, Fassas A, Hollmig K, Pineda-Roman M, Shaughnessy J (2006) Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies. Blood 107(7):2633–2638

    Article  CAS  Google Scholar 

  47. Pineda-Roman M, Zangari M, Haessler J, Anaissie E, Tricot G, Van Rhee F, Crowley J, Shaughnessy JD Jr, Barlogie B (2008) Sustained complete remissions in multiple myeloma linked to bortezomib in total therapy 3: comparison with total therapy 2. Br J Haematol 140(6):625–634

    Article  CAS  Google Scholar 

  48. Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10(5):1163–1174

    Article  CAS  Google Scholar 

  49. Conconi A, Bespalov VA, Smerdon MJ (2002) Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc Natl Acad Sci 99(2):649–654

    Article  CAS  Google Scholar 

  50. Zhang G, Xue P, Cui S, Yu T, Xiao M, Zhang Q, Cai Y, Jin C, Yang J, Wu S (2018) Different splicing isoforms of ERCC1 affect the expression of its overlapping genes CD3EAP and PPP1R13L, and indicate a potential application in non-small cell lung cancer treatment. Int J Oncol 52(6):2155–2165

    CAS  PubMed  Google Scholar 

  51. Bessho T, Mu D, Sancar A (1997) Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5’ to the cross-linked base and removes a 22-to 28-nucleotide-long damage-free strand. Mol Cell Biol 17(12):6822–6830

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MVK carried out the literature search. MVK and NAH independently assessed relevance of articles using pre-determined inclusion/exclusion criteria. MVK and KEB undertook the data collection and critique. MVK, KEB and NAH all contributed in writing the manuscript.

Corresponding author

Correspondence to Maia van Kan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Kan, M., Burns, K.E. & Helsby, N.A. A systematic review of inter-individual differences in the DNA repair processes involved in melphalan monoadduct repair in relation to treatment outcomes. Cancer Chemother Pharmacol 88, 755–769 (2021). https://doi.org/10.1007/s00280-021-04340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04340-z

Keywords

Navigation