Skip to main content

Advertisement

Log in

Involvement of ER stress and reactive oxygen species generation in anti-cancer effect of CKD-516 for lung cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

CKD-516 (Valecobulin), a vascular-disrupting agent, inhibits microtubule elongation. We evaluated the effect of CKD-516 on lung cancer cells and the underlying molecular mechanisms.

Methods

The effects of S516, an active metabolite of CKD-516, were evaluated in HUVECs and three lung cancer cell lines and by a microtubule polymerization assay. Tubulin cross-linking was used to identify the binding site of S516 on tubulin, and Western blotting was performed to identify the intracellular pathways leading to cell death. Subcutaneous lung cancer xenograft models were used to assess the in vivo effect of CKD-516 on tumor growth.

Results

S516 targeted the colchicine binding site on β-tubulin. In lung cancer cells, S516 increased endoplasmic reticulum (ER) stress and induced reactive oxygen species (ROS) generation by mitochondria and the ER. In addition, CKD-516 monotherapy strongly inhibited the growth of lung cancer xenograft tumors and exerted a synergistic effect with carboplatin.

Conclusion

The findings suggest that CKD-516 exerts an anticancer effect in company with inducing ER stress and ROS production via microtubule disruption in lung cancer cells. CKD-516 may thus have therapeutic potential for lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

4-PBA:

4-Phenylbutyric acid

ATCC:

American type culture collection

ATF6:

Activating transcription factor 6

Carboplatin:

Cyclobutane-1,1-dicarboxylate-O,Oʹ

CHOP:

C/EBP homologous protein

Cys:

Cysteine

DAPI:

4ʹ,6-diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

DPI:

Diphenyleneiodonium

EBI:

N,Nʹ-ethylene-bis(iodoacetamide)

ER:

Endoplasmic reticulum

FBS:

Fetal bovine serum

Grp78:

Glucose-regulated protein 78

DCFH-DA:

2′,7′-dichlorofluorescin diacetate

HO-1:

Heme oxygenase 1

HRP:

Horseradish peroxidase

HUVEC:

Human umbilical vein endothelial cell

IACUC:

Institutional animal care and use committee

Ire1α:

Inositol-requiring enzyme 1α

LC3B:

Microtubule-associated protein 1 light chain 3

MOI:

Multiplicity of infection

MTCC:

Modern cell & tissue technologies

NAC:

N-acetylcysteine

NADPH:

Nicotinamide adenine dinucleotide phosphate

NSCLC:

Non-small cell lung cancer

NQO1:

NAD(P)H dehydrogenase

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

RIPA:

Radioimmunoprecipitation assay buffer

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

ROS:

Reactive oxygen species

UPR:

Unfolded protein response

VDA:

Vascular disrupting agent

References

  1. Ahn SY, Goo JM, Lee KH, Ha S, Paeng JC (2018) Monitoring tumor response to the vascular disrupting agent CKD-516 in a rabbit VX2 intramuscular tumor model using PET/MRI: simultaneous evaluation of vascular and metabolic parameters. PLoS ONE 13(2):e0192706

    PubMed  PubMed Central  Google Scholar 

  2. Chase DM, Chaplin DJ, Monk BJ (2017) The development and use of vascular targeted therapy in ovarian cancer. Gynecol Oncol 145(2):393–406

    CAS  PubMed  Google Scholar 

  3. Chiu WH, Luo SJ, Chen CL, Cheng JH, Hsieh CY, Wang CY, Huang WC, Su WC, Lin CF (2012) Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochem Pharmacol 83(9):1159–1171

    CAS  PubMed  Google Scholar 

  4. Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N (2018) An overview on Vadimezan (DMXAA): the vascular disrupting agent. Chem Biol Drug Des 91(5):996–1006

    CAS  PubMed  Google Scholar 

  5. Dey S, Kumari S, Kalainayakan SP, Campbell J 3rd, Ghosh P, Zhou H, FitzGerald KE, Li M, Mason RP, Zhang L, Liu L (2018) The vascular disrupting agent combretastatin A-4 phosphate causes prolonged elevation of proteins involved in heme flux and function in resistant tumor cells. Oncotarget 9(3):4090–4101

    PubMed  Google Scholar 

  6. Flynn BL, Gill GS, Grobelny DW, Chaplin JH, Paul D, Leske AF, Lavranos TC, Chalmers DK, Charman SA, Kostewicz E, Shackleford DM, Morizzi J, Hamel E, Jung MK, Kremmidiotis G (2011) Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J Med Chem 54(17):6014–6027

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fortin S, Lacroix J, Cote MF, Moreau E, Petitclerc E, René C (2010) Quick and simple detection technique to assess the binding of antimicrotubule agents to the colchicine-binding site. Biol Proced Online 12(1):113–117

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gill JH, Loadman PM, Shnyder SD, Cooper P, Atkinson JM, Ribeiro Morais G, Patterson LH, Falconer RA (2014) Tumor-targeted prodrug ICT2588 demonstrates therapeutic activity against solid tumors and reduced potential for cardiovascular toxicity. Mol Pharm 11(4):1294–1300

    CAS  PubMed  Google Scholar 

  9. Gill JH, Rockley KL, De Santis C, Mohamed AK (2019) Vascular disrupting agents in cancer treatment: cardiovascular toxicity and implications for co-administration with other cancer chemotherapeutics. Pharmacol Ther

  10. Goto H, Yano S, Zhang H, Matsumori Y, Ogawa H, Blakey DC, Sone S (2002) Activity of a new vascular targeting agent, ZD6126, in pulmonary metastases by human lung adenocarcinoma in nude mice. Cancer Res 62(13):3711–3715

    CAS  PubMed  Google Scholar 

  11. Grasse S, Lienhard M, Frese S, Kerick M, Steinbach A, Grimm C, Hussong M, Rolff J, Becker M, Dreher F, Schirmer U, Boerno S, Ramisch A, Leschber G, Timmermann B, Grohe C, Luders H, Vingron M, Fichtner I, Klein S, Odenthal M, Buttner R, Lehrach H, Sultmann H, Herwig R, Schweiger MR (2018) Epigenomic profiling of non-small cell lung cancer xenografts uncover LRP12 DNA methylation as predictive biomarker for carboplatin resistance. Genome Med 10(1):55

    PubMed  PubMed Central  Google Scholar 

  12. Ham SJ, Choi Y, Lee SI, Kim J, Kim YI, Chung JW, Kim KW (2017) Enhanced efficacy of radiofrequency ablation for hepatocellular carcinoma using a novel vascular disrupting agent, CKD-516. Hepatol Int 11(5):446–451

    PubMed  Google Scholar 

  13. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, Anderson KC (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102(24):8567–8572

    CAS  PubMed  Google Scholar 

  14. Ho CT, Chang YJ, Yang LX, Wei PL, Liu TZ, Liu JJ (2015) A novel microtubule-disrupting agent induces endoplasmic reticular stress-mediated cell death in human hepatocellular carcinoma cells. PLoS ONE 10(9):e0136340

    PubMed  PubMed Central  Google Scholar 

  15. Hoang T, Huang S, Armstrong E, Eickhoff JC, Harari PM (2006) Augmentation of radiation response with the vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 64(5):1458–1465

    CAS  PubMed  Google Scholar 

  16. Hollebecque A, Massard C, Soria JC (2012) Vascular disrupting agents: a delicate balance between efficacy and side effects. Curr Opin Oncol 24(3):305–315

    CAS  PubMed  Google Scholar 

  17. Hori K, Saito S, Kubota K (2002) A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs. Br J Cancer 86(10):1604–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hori K, Saito S, Nihei Y, Suzuki M, Sato Y (1999) Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700. Jpn J Cancer Res 90(9):1026–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hori K, Saito S, Sato Y, Akita H, Kawaguchi T, Sugiyama K, Sato H (2003) Differential relationship between changes in tumour size and microcirculatory functions induced by therapy with an antivascular drug and with cytotoxic drugs. Implications for the evaluation of therapeutic efficacy of AC7700 (AVE8062). Eur J Cancer 39(13):1957–1966

    CAS  PubMed  Google Scholar 

  20. Hura N, Sawant AV, Kumari A, Guchhait SK, Panda D (2018) Combretastatin-inspired heterocycles as antitubulin anticancer agents. ACS Omega 3(8):9754–9769

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ji YT, Liu YN, Liu ZP (2015) Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments. Curr Med Chem 22(11):1348–1360

    CAS  PubMed  Google Scholar 

  22. Joo I, Kim JH, Lee JM, Choi JW, Han JK, Choi BI (2014) Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors. Ultrasonography 33(1):18–25

    PubMed  Google Scholar 

  23. Joo I, Lee JM, Han JK, Choi BI (2014) Intravoxel incoherent motion diffusion-weighted MR imaging for monitoring the therapeutic efficacy of the vascular disrupting agent CKD-516 in rabbit VX2 liver tumors. Radiology 272(2):417–426

    PubMed  Google Scholar 

  24. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6):727–738

    CAS  PubMed  Google Scholar 

  25. Kim KW, Lee JM, Jeon YS, Lee IJ, Choi Y, Park J, Kiefer B, Kim C, Han JK, Choi BI (2013) Vascular disrupting effect of CKD-516: preclinical study using DCE-MRI. Investig New Drugs 31(5):1097–1106

    CAS  Google Scholar 

  26. Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: janus faces. Am J Physiol Renal Physiol 295(2):F323–334

    CAS  PubMed  Google Scholar 

  27. Lee IJ, Lee M, Kim SJ, Kim YK, Won JY, Chung JW (2018) Chemoembolization with vascular disrupting agent CKD-516 dissolved in ethiodized oil in combination with doxorubicin: a VX2 tumor model study. J Vasc Interv Radiol 29(8):1078–1084

    PubMed  Google Scholar 

  28. Lee J, Bae S, Lee SH, Choi H, Kim YH, Kim SJ, Park GT, Moon SK, Kim DH, Lee S, Ahn SK, Choi NS, Lee KJ (2010) Discovery of a potent tubulin polymerization inhibitor: synthesis and evaluation of water-soluble prodrugs of benzophenone analog. Bioorg Med Chem Lett 20(21):6327–6330

    CAS  PubMed  Google Scholar 

  29. Lee J, Kim SJ, Choi H, Kim YH, Lim IT, Yang HM, Lee CS, Kang HR, Ahn SK, Moon SK, Kim DH, Lee S, Choi NS, Lee KJ (2010) Identification of CKD-516: a potent tubulin polymerization inhibitor with marked antitumor activity against murine and human solid tumors. J Med Chem 53(17):6337–6354

    CAS  PubMed  Google Scholar 

  30. Little M, Luduena RF (1985) Structural differences between brain beta 1- and beta 2-tubulins: implications for microtubule assembly and colchicine binding. EMBO J 4(1):51–56

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Jiang C, Zhang D, Gao M, Peng F, Huang D, Sun Z, Ni Y, Zhang J, Yin Z (2015) Tumor necrosis targeted radiotherapy of non-small cell lung cancer using radioiodinated protohypericin in a mouse model. Oncotarget 6(28):26400–26410

    PubMed  PubMed Central  Google Scholar 

  32. Ma M, Zhao J, Cheng H, Deng M, Ding Z, Hou Y, Li F, Dou G, Li W (2018) In vitro and in vivo pharmacokinetic and pharmacodynamic study of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent. Bioorg Med Chem 26(16):4687–4692

    CAS  PubMed  Google Scholar 

  33. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592

    CAS  PubMed  Google Scholar 

  34. Moon CH, Lee SJ, Lee HY, le Dung TK, Cho WJ, Cha H, Park JW, Min YJ (2014) CKD-516 displays vascular disrupting properties and enhances anti-tumor activity in combination with chemotherapy in a murine tumor model. Investig New Drugs 32(3):400–411

    CAS  Google Scholar 

  35. Nakajima Y, Suzuki S (2013) Environmental stresses induce misfolded protein aggregation in plant cells in a microtubule-dependent manner. Int J Mol Sci 14(4):7771–7783

    PubMed  PubMed Central  Google Scholar 

  36. Parker AL, Kavallaris M, McCarroll JA (2014) Microtubules and their role in cellular stress in cancer. Front Oncol 4:153

    PubMed  PubMed Central  Google Scholar 

  37. Petit I, Karajannis MA, Vincent L, Young L, Butler J, Hooper AT, Shido K, Steller H, Chaplin DJ, Feldman E, Rafii S (2008) The microtubule-targeting agent CA4P regresses leukemic xenografts by disrupting interaction with vascular cells and mitochondrial-dependent cell death. Blood 111(4):1951–1961

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Raben D, Bianco C, Damiano V, Bianco R, Melisi D, Mignogna C, D’Armiento FP, Cionini L, Bianco AR, Tortora G, Ciardiello F, Bunn P (2004) Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model. Mol Cancer Ther 3(8):977–983

    CAS  PubMed  Google Scholar 

  39. Rossi A, Di Maio M (2016) Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther 16(6):653–660

    CAS  PubMed  Google Scholar 

  40. Salmon HW, Siemann DW (2006) Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity. Clin Cancer Res 12(13):4090–4094

    CAS  PubMed  Google Scholar 

  41. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833(12):3460–3470

    CAS  PubMed  Google Scholar 

  42. Santos CX, Nabeebaccus AA, Shah AM, Camargo LL, Filho SV, Lopes LR (2014) Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal 20(1):121–134

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Senft D, Ronai ZA (2016) Adaptive stress responses during tumor metastasis and dormancy. Trends Cancer 2(8):429–442

    PubMed  PubMed Central  Google Scholar 

  44. Siemann DW, Chaplin DJ, Horsman MR (2017) Realizing the potential of vascular targeted therapy: the rationale for combining vascular disrupting agents and anti-angiogenic agents to treat cancer. Cancer Investig 35(8):519–534

    CAS  Google Scholar 

  45. Taylor M, Billiot F, Marty V, Rouffiac V, Cohen P, Tournay E, Opolon P, Louache F, Vassal G, Laplace-Builhe C, Vielh P, Soria JC, Farace F (2012) Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells. Cancer Discov 2(5):434–449

    CAS  PubMed  Google Scholar 

  46. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–435

    CAS  PubMed  Google Scholar 

  47. Wang L, Chanvorachote P, Toledo D, Stehlik C, Mercer RR, Castranova V, Rojanasakul Y (2008) Peroxide is a key mediator of Bcl-2 down-regulation and apoptosis induction by cisplatin in human lung cancer cells. Mol Pharmacol 73(1):119–127

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant (NRF-2017R1A4A1015860 and 2018R1A2B2003590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keon Wook Kang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

280_2020_4043_MOESM1_ESM.pptx

Supplementary material 1 (PPTX 125 kb) Increase in poly-ubiquitinated proteins by S516 treatment. H460 cells were treated with S516 (10 and 30 nM) in the presence or absence of 10 nM bortezomib (BTZ) for 24 h. The combination of S516 and BTZ led to accumulation of poly-ubiquitinated proteins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Jegal, K.H., Im, JH. et al. Involvement of ER stress and reactive oxygen species generation in anti-cancer effect of CKD-516 for lung cancer. Cancer Chemother Pharmacol 85, 685–697 (2020). https://doi.org/10.1007/s00280-020-04043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04043-x

Keywords

Navigation