Skip to main content
Log in

Cellular effect and efficacy of carfilzomib depends on cellular net concentration gradient

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The cellular interrelation between intracellular concentrations of unbound carfilzomib, a second-generation proteasome inhibitor, and subsequent proteasome inhibition and effect on cell viability are unknown and were evaluated for two different exposure regimens: A high dose bolus regime of 500 nM for 1 h followed by 47 h in drug-free media vs. 48-h continuous exposure to 10 nM.

Methods

Eight multiple myeloma cell lines were exposed to either one of the two exposure regimens. We quantified the intracellular unbound carfilzomib fraction up to 48 h with a new ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS) method. Intracellular concentrations were compared to simultaneously determined cell viability (AlamarBlue® assay) and proteasomal subunit activity (ProGlo™ assay).

Results

Within the first 10 min, the proportional intracellular enrichment of unbound carfilzomib was higher (313 nM; 62.6%) for the exposure to 500 nM compared to 10 nM (1.93 nM; 19.3%). However, after 1 h, an intracellular/extracellular concentration equilibrium was reached with both settings. At low exposure concentrations, drug removal after 1 h diminished carfilzomib efficacy. Moreover, proteasomal activity recovered when exposed to 10 nM for 48 h. However, when exposure concentration was high (500 nM) proteasome inhibition was complete and sustained even with drug removal after 1 h.

Conclusions

We demonstrated that the carfilzomib concentration gradient determines cellular uptake kinetics. The uptake kinetics in turn affects binding, saturation, and activity of the proteasome. Together, these data underscore the importance of steep concentrations for the in vitro efficacy of carfilzomib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lawasut P, Chauhan D, Laubach J, Hayes C, Fabre C, Maglio M, Mitsiades C, Hideshima T, Anderson KC, Richardson PG (2012) New proteasome inhibitors in myeloma. Current Hematol Malig Rep 7:258–266

    Article  Google Scholar 

  2. Teicher BA, Tomaszewski JE (2015) Proteasome inhibitors. Biochem Pharmacol 96:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux CJ, Bennett MK (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391

    Article  CAS  PubMed  Google Scholar 

  4. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA, Orlowski RZ (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110:3281–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, Micklem DR, Ruurs P, Sylvain C, Lu Y, Shenk KD, Bennett MK (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114:3439–3447

    Article  CAS  PubMed  Google Scholar 

  6. Meister S, Schubert U, Neubert K, Herrmann K, Burger R, Gramatzki M, Hahn S, Schreiber S, Wilhelm S, Herrmann M, Jäck HM, Voll RE (2007) Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res 67:1783–1792

    Article  CAS  PubMed  Google Scholar 

  7. Mitsiades CS (2015) Therapeutic landscape of carfilzomib and other modulators of the ubiquitin-proteasome pathway. J Clin Oncol 33:782–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clemens J, Seckinger A, Hose D, Theile D, Longo M, Haefeli WE, Burhenne J, Weiss J (2015) Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters. Cancer Chemother Pharmacol 75:281–291

    Article  CAS  PubMed  Google Scholar 

  9. Dettmer S, Theile D, Schafer J, Seckinger A, Burhenne J, Weiss J (2016) Proteasome inhibition correlates with intracellular bortezomib concentrations but not with antiproliferative effects after bolus treatment in myeloma cell lines. Naunyn-Schmiedeberg’s Arch Pharmacol 389:1091–1101

    Article  CAS  Google Scholar 

  10. Clemens J, Longo M, Seckinger A, Hose D, Haefeli WE, Weiss J, Burhenne J (2014) Stability of the proteasome inhibitor bortezomib in cell based assays determined by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1345:128–138

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Yang J, Kirk C, Fang Y, Alsina M, Badros A, Papadopoulos K, Wong A, Woo T, Bomba D, Li J, Infante JR (2013) Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab Dispos 41:230–237

    Article  CAS  PubMed  Google Scholar 

  12. Bianchi G, Oliva L, Cascio P, Pengo N, Fontana F, Cerruti F, Orsi A, Pasqualetto E, Mezghrani A, Calbi V, Palladini G, Giuliani N, Anderson KC, Sitia R, Cenci S (2009) The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood 113:3040–3049

    Article  CAS  PubMed  Google Scholar 

  13. Kortuem KM, Stewart AK (2013) Carfilzomib. Blood 121:893–897

    Article  CAS  PubMed  Google Scholar 

  14. Sestak V, Roh J, Klepalova L, Kovarikova P (2016) A UHPLC-UV-QTOF study on the stability of carfilzomib, a novel proteasome inhibitor. J Pharm Biomed Anal 124:365–373

    Article  CAS  PubMed  Google Scholar 

  15. Badros AZ, Vij R, Martin T, Zonder JA, Kunkel L, Wang Z, Lee S, Wong AF, Niesvizky R (2013) Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 27:1707–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Kruger E (2003) Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 278:21517–21525

    Article  CAS  PubMed  Google Scholar 

  17. Dettmer S, Theile D, Seckinger A, Burhenne J, Weiss J (2015) Fetal calf sera can distort cell-based luminescent proteasome assays through heat-resistant chymotrypsin-like activity. Anal Biochem 471:23–25

    Article  CAS  PubMed  Google Scholar 

  18. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540

    CAS  PubMed  Google Scholar 

  19. Han B, Yao W, Oh YT, Tong JS, Li S, Deng J, Yue P, Khuri FR, Sun SY (2015) The novel proteasome inhibitor carfilzomib activates and enhances extrinsic apoptosis involving stabilization of death receptor 5. Oncotarget 6:17532–17542

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, Schlossman R, Podar K, Munshi NC, Mitsiades N, Anderson KC (2003) Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 101:1530–1534

    Article  CAS  PubMed  Google Scholar 

  21. Williams SA, McConkey DJ (2003) The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res 63:7338–7344

    CAS  PubMed  Google Scholar 

  22. Mishima Y, Santo L, Eda H, Cirstea D, Nemani N, Yee AJ, O’Donnell E, Selig MK, Quayle SN, Arastu-Kapur S, Kirk C, Boise LH, Jones SS, Raje N (2015) Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. Br J Haematol 169:423–434

    Article  CAS  PubMed  Google Scholar 

  23. Zang Y, Thomas SM, Chan ET, Kirk CJ, Freilino ML, DeLancey HM, Grandis JR, Li C, Johnson DE (2012) The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4. Autophagy 8:1873–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors like to thank Stephanie Rosenzweig, Magdalena Longo, and Andrea Deschlmayr for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Weiss.

Ethics declarations

Funding

This work was supported in part by grants from the Deutsche Forschungsgemeinschaft (SFB/TRR79, subproject B10; Bonn, Germany).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, J., Welti, L., Seckinger, A. et al. Cellular effect and efficacy of carfilzomib depends on cellular net concentration gradient. Cancer Chemother Pharmacol 80, 71–79 (2017). https://doi.org/10.1007/s00280-017-3335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3335-4

Keywords

Navigation