Skip to main content

Advertisement

Log in

The role of Nrf2 and ATF2 in resistance to platinum-based chemotherapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Nrf2 and its role in controlling levels of the AKR family of aldo–keto reductases which have been implicated in resistance to platinum-based chemotherapy was studied in ovarian, cervical and lung cell lines.

Methods

Nrf2 shRNA knockdowns of cells from different tumor origins were prepared to determine the role of this factor in producing resistance to platinum chemotherapy.

Results

Nrf2 knockdowns resulted in marked decreases in AKR1C1, AKR1C2 and to a lesser extent AKR1C3. Additionally, all other candidate enzymes GSTπ and TRX1 were decreased, but their role was difficult to correlate to cytotoxicity. Nrf2 knockdowns exhibited marked increases in mitochondrial membrane depolarization and ROS production following cisplatin treatment, with the cervical ME180R knockdowns exhibiting the greatest effect (AKR1C1 and AKR1C2 levels were decreased in the ME180R and SKOV3 cells to near zero). Oxaliplatin tended to parallel cisplatin, except it markedly stimulated O2 production not \( {\text{H}}_{2} {\text{O}}_{2}\) by oxaliplatin treatment of the ME180R cells. The pJNK/p38 pathway has been implicated in cisplatin cytotoxicity, and significant phosphorylation of pJNK was observed in the SKOV3 and ME180R and p38 in the SKOV3 knockdowns. Phosphorylation of ATF2 was decreased in the Nrf2 knockdowns (Crf38, Srf6, Arf5) which could affect its interaction with JNK and p38. Oxaliplatin treatment showed minimal effects on the JNK/p38 pathway, showing that its mode of action is different although ROS generation appeared an initial step with both drugs.

Conclusions

Nrf2 controls a multitude of different candidate genes; however, it did markedly modulate cisplatin resistance through the AKR family. This involved ROS production and activation of the pJNK/p38 pathway with involvement of ATF2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kansanen E, Jyrkkanen HK, Levonen AL (2012) Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 52:973–982

    Article  CAS  PubMed  Google Scholar 

  2. Kang MI, Kobayashi A, Wakabayashi N, Kim SG, Yamamoto M (2004) Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci 101:2046–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baird L, Swift S, Lleres D, Dinkova-Kostova AT (2014) Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol Adv 32:1133–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44

    Article  CAS  PubMed  Google Scholar 

  5. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C et al (2010) Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acid Res 38:5718–5734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Wijst MGP, Brown R, Rots MG (2014) Nrf2, the master redox switch: the Achilles’ heel of ovarian cancer? Biochim Biophys Acta 1846:494–509

    PubMed  Google Scholar 

  7. Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S, Grammatikos AP et al (2011) Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res 71:5081–5089

    Article  CAS  PubMed  Google Scholar 

  8. Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A et al (2012) Transcriptomic and proteomic profiling of Keap1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat 132:175–187

    Article  CAS  PubMed  Google Scholar 

  9. Hanada N, Takahata T, Zhou Q, Ye X, Sun R, Itoh J et al (2012) Methylation of the Keap1 gene promoter region in human colorectal cancer. BMC Cancer 12:1–11

    Article  Google Scholar 

  10. Loignon M, Miao W, Hu L, Bier A, Bismar TA, Scrivens PJ et al (2012) Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens, to oxidative stress, and to chemotherapy. Mol Cancer Ther 8:2432–2440

    Article  Google Scholar 

  11. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J et al (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975–7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shim G-S, Manandhar S, Shin D-H, Kim T-H, Kwak M-K (2009) Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of NRF2 pathway. Free Radic Biol Med 347:1619–1631

    Article  Google Scholar 

  13. Manandhar S, Choi B-H, Jung K-A, Ryoo I-G, Song M, Kang SJ et al (2012) NRF2 inihibition represses ErbB2 signaling in ovarian carcinoma cells: implications for tumor growth retardation and docetaxel sensitivity. Free Radic Biol Med 52:1773–1785

    Article  CAS  PubMed  Google Scholar 

  14. Chen C-C, Chu C-B, Liu K-J, Huang C-YF, Chang J-Y, Pan W-Y et al (2013) Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: the role of IL-6 signaling and Nrf2/AKR1C axis identification. Biochem Pharmacol 28:872–887

    Article  CAS  Google Scholar 

  15. Hsu NY, Ho HC, Chow KC, Lin TY, Shih CS, Wang LS, Tsai CM (2001) Overexpression of dihydrodiol dehydrogenase as a prognostic marker of non-small cell lung cancer. Cancer Res 61:2727–2731

    CAS  PubMed  Google Scholar 

  16. Kuang P, Zhou C, Li X, Ren S, Li B, Wang Y et al (2012) Proteomics-based identification of secreted protein dihydrodiol dehydrogenase 2 as a potential biomarker for predicting cisplatin efficacy in advanced NSCLC patients. Lung Cancer 77:427–432

    Article  PubMed  Google Scholar 

  17. Smithgall TE, Harvey RG, Penning TM (1986) Regio-and stereospecificity of homogeneous 3 alpha hydroxysteroid-dihydrodiol dehydrogenase for transdihydrodiol metabolites of polycyclic aromatic hydrocarbons. J Biol Chem 261:6184–6191

    CAS  PubMed  Google Scholar 

  18. Burczynski ME, Sridhar GR, Palackal NT, Penning TM (2001) The reactive oxygen species-and michael acceptor—inducible human aldo-keto reductase AKR1C1 reduces the α, β-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-noene. J Biol Chem 276:2890–2897

    Article  CAS  PubMed  Google Scholar 

  19. Deng HB, Adikari M, Parekh HK, Simpkins H (2002) Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells. J Biol Chem 277:15035–15043

    Article  CAS  PubMed  Google Scholar 

  20. Deng HB, Adikari M, Parekh HK, Simpkins H (2004) Ubiquitous induction of resistance to platinum drugs in human ovarian, cervical, germ cell and lung carcinoma tumor cells overexpressing isoforms 1 and 2 of dihydrodriol dehydrogenase. Cancer Chemother Pharmacol 54:301–307

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Emara N, Solomides C, Parekh H, Simpkins H (2010) Resistance to platinum based chemotherapy in lung cancer cell lines. Cancer Chem Pharm 66(1):103–1111

    Google Scholar 

  22. Chen J, Parekh H, Solomides C, Simpkins F, Simpkins H (2015) Cisplatin resistance in human cervical, ovarian and lung cancer cells. Cancer Chemother Pharmacol 75:1217–1227

    Article  CAS  PubMed  Google Scholar 

  23. Takada E, Hata K, Mizuguchi J (2008) C-Jun-NH2-terminal kinase potentiates apoptotic cell death in response to carboplatin in B lymphoma cells. Cancer Chemother Pharmacol 62:569–576

    Article  CAS  PubMed  Google Scholar 

  24. Bragado P, Armesilla A, Silva A, Porras A (2007) Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis 12:1733–1742

    Article  CAS  PubMed  Google Scholar 

  25. Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    Article  CAS  PubMed  Google Scholar 

  26. Hayakawa J, Depatie C, Ohmichi M, Mercola D (2003) The activation of c-Jun NH2- terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2 (ATF2)-dependent enhanced DNA repair. J Biol Chem 278:20562–20592

    Article  Google Scholar 

  27. Korsch C, Spillman MA, Jackson TA, Jacobsen BM, Murphy SK, Lessey BA et al (2012) DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification redundancy and contamination. Gynecol Oncol 127:241–248

    Article  Google Scholar 

  28. Yokomizo A, Ono M, Nanri H, Makino Y, Ohga T, Wada M et al (1995) Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin and ectoposide. Cancer Res 55:4293–4296

    CAS  PubMed  Google Scholar 

  29. Sasada T, Iwata S, Sato N, Kitaoka Y, Hirota K, Nakamura K et al (1996) Redox control of resistance to CDDP: protective effect of human thioredoxin against CDDP-induced cytotoxicity. J Clin Invest 91:2268–2276

    Article  Google Scholar 

  30. Yamada M, Tomida A, Yoshikawa H, Taketani Y, Tsuruo T (1997) Overexpression of thioredoxin does not confer resistance to cisplatin in transfected human ovarian and colon cancer cell lines. Cancer Chemother Pharmacol 40:31–37

    Article  CAS  PubMed  Google Scholar 

  31. Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin J, Manketkom S (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiation Phys Chem 72:323–331

    Article  CAS  Google Scholar 

  32. Camara AKS, Riess ML, Kevin LG, Novalia E, Stowe DL (2004) Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart. Am J Physiol (Heart Circ Physiol) 286:H1289–H1299

    Article  CAS  Google Scholar 

  33. Gebauer A, Mirakhur B, Nguyen A, Shue SK, Simpkins H, Dhanasekaran N (2000) Cisplatin resistance involving the defective processing of MEKKI in human ovarian adenocarcinoma 2008/C13 cells. Int Jnl Oncol 16:321–325

    CAS  Google Scholar 

  34. Gupta S, Campbell D, Derijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389–393

    Article  CAS  PubMed  Google Scholar 

  35. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375

    Article  CAS  PubMed  Google Scholar 

  36. Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR (2003) Glutathione-S-transferase π amplification is associated with cisplatin resistance in head and neck sqamous cell carcinoma cell lines and primary tumors. Cancer Res 63:8097–8102

    CAS  PubMed  Google Scholar 

  37. Surowiak P, Materna V, Kaplenko I, Spaczynski M, Dietel M, Lage H et al. Augmented expression of metallothionein and glutathione-S-transferes π as unfavorable prognostic factors in cisplatin treated ovarian cancer patients Virchows Arch 447:626–633

  38. Pasello M, Michelacci F, Scionti I, Hattinger CM, Zuntini M, Caccuri AM et al (2008) Overcoming glutathione-S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Re 68:6661–6668

    Article  CAS  Google Scholar 

  39. De Luca A, Tregno FP, Sau A, Pastore A, Palumbo C, Alama A et al (2013) Glutathione S-transferase P1-1 as a target for mesothelioma treatment. Cancer Sci 104:223–230

    Article  PubMed  Google Scholar 

  40. Knippen S, Loning T, Muller V, Schroder C, Janicke F, Milde-Langosch K (2009) Expression and prognostic value of activating transcription factor 2 (ATF2) and its phosphorylated form in mammary carcinomas. Anticancer Res 29:183–190

    CAS  PubMed  Google Scholar 

  41. Duffey D, Dolgilevich S, Razzouk S, Li L, Green R, Gorti GK (2011) Activating transcription factor-2 (ATF2) in survival mechanisms in head and neck carcinoma cells. Head Neck 33:1586–1599

    Article  PubMed  Google Scholar 

  42. Lo Iacono M, Monica V, Vavalàt T, Gisabella M, Saviozzi S, Bracco E et al (2015) ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer 136:2598–2609

    Article  PubMed  Google Scholar 

  43. Lau E, Ronai Z (2012) ATF2—at the crossroad of nuclear and cytosolic functions. J Cell Sci 125:2815–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hector S, Bolanowska-Higdon W, Zdanowicz J, Hitt S, Pendyla L (2011) In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother Pharmacol 48:398–406

    Article  Google Scholar 

  45. Fink D, Zheng H, Nebel S, Norris PS, Aebi S, Lin TP et al (1997) In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res 57:1846–1847

    Google Scholar 

  46. Lee SH, Bahn JH, Whitlock NC, Baek SJ (2010) Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29:5182–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown SL, Sekhar KR, Rachakonda G, Sasi S, Freeman ML (2008) Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway. Cancer Res 68(2):364–368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Diane Murphy for helping prepare the manuscript.

Funding

The work was supported by the Northwell Health System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Simpkins.

Ethics declarations

Conflict of interest

The authors disclose no potential conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Solomides, C., Simpkins, F. et al. The role of Nrf2 and ATF2 in resistance to platinum-based chemotherapy. Cancer Chemother Pharmacol 79, 369–380 (2017). https://doi.org/10.1007/s00280-016-3225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3225-1

Keywords

Navigation