Skip to main content
Log in

Measures of 6-mercaptopurine and methotrexate maintenance therapy intensity in childhood acute lymphoblastic leukemia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Normal white blood cell counts (WBC) are unknown in children with acute lymphoblastic leukemia (ALL). Accordingly, 6-mercaptopurine (6MP) and methotrexate (MTX) maintenance therapy is adjusted by a common WBC target of 1.5–3.0 × 109/L. Consequently, the absolute degree of myelosuppression is unknown for the individual child and we wanted to evaluate this.

Methods

A median of 22 (range 8–27) 6MP/MTX metabolite samples and 100 (range 25–130) blood counts during therapy and 10 (range 2–15) off therapy were collected in 50 children with ALL. Differences between off-therapy and on-therapy WBCs [including absolute neutrophil (ANC) and lymphocyte counts (ALC)] were used to retrospectively approximate the absolute myelosuppression (=“delta-”) and association with age, sex and 6MP/MTX doses explored. We applied linear mixed models to estimate on-therapy counts by 6MP/MTX metabolites: DNA-incorporated thioguanine nucleotides (DNA-TGN), erythrocyte thioguanine nucleotides (ery-TGN), erythrocyte-methylated 6MP metabolites (ery-MeMP) and erythrocyte MTX polyglutamates with 2–6 glutamate residues (ery-MTXpg2–6).

Results

On-therapy WBC was correlated with ANC and ALC (r s  = 0.84 and r s  = 0.33, p values <0.001), whereas ANC was weakly correlated with ALC (r s  = −0.11, p < 0.001), and neither significantly correlated with age. Off-therapy ALC, but not ANC, was strongly correlated with age (r s  = −0.68 and −0.18, p < 0.001 and p = 0.22). Delta-ALC decreased with increasing age (r s  = −0.69, p < 0.001). Incorporation of DNA-TGN was positively associated with ery-TGN (p < 0.001), ery-MeMP (p < 0.001) and ery-MTXpg2–6 (p = 0.047). On-therapy ALC decreased with increasing DNA-TGN level (p < 0.001, model adjusted for off-therapy ALC), whereas on-therapy ANC could not be modeled reliably.

Conclusion

Measurements of 6MP/MTX metabolites could supplement blood counts in assessing therapy intensity, but require prospective validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Eys J, Berry D, Crist W et al (1989) Treatment intensity and outcome for children with acute lymphocytic leukemia of standard risk: A Pediatric Oncology group study. Cancer 63:1466–1471

    Article  PubMed  Google Scholar 

  2. Schmiegelow K, Bjork O, Glomstein A et al (2003) Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J Clin Oncol 21:1332–1339. doi:10.1200/JCO.2003.04.039

    Article  CAS  PubMed  Google Scholar 

  3. Relling MV, Hancock ML, Boyett JM et al (1999) Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 93:2817–2823

    CAS  PubMed  Google Scholar 

  4. Schmiegelow K, Nielsen SN, Frandsen TL, Nersting J (2014) Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction. J Pediatr Hematol Oncol 00:1–15. doi:10.1097/MPH.0000000000000206

    Google Scholar 

  5. Aricó M, Baruchel A, Bertrand Y et al (2005) The seventh international childhood acute lymphoblastic leukemia workshop report: Palermo, Italy, January 29–30, 2005. Leukemia 19:1145–1152. doi:10.1038/sj.leu.2403783

    Article  PubMed  Google Scholar 

  6. Schmiegelow K, Pulczynska MK, Seip M (1988) White cell count during maintenance chemotherapy for standard-risk childhood acute lymphoblastic leukemia: relation to relapse rate. Pediatr Hematol Oncol 5:259–267. doi:10.3109/08880018809037365

    Article  CAS  PubMed  Google Scholar 

  7. Dolan G, Lilleyman JS, Richards SM (1989) Prognostic importance of myelosuppression during maintenance treatment of lymphoblastic leukaemia. Leukaemia in Childhood Working Party of the Medical Research Council. Arch Dis Child 64:1231–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chessells JM, Harrison G, Lilleyman JS et al (1997) Continuing (maintenance) therapy in lymphoblastic leukaemia: lessons from MRC UKALL X. Medical Research Council Working Party in Childhood Leukaemia. Br J Haematol 98:945–951

    Article  CAS  PubMed  Google Scholar 

  9. Schmiegelow K, Nersting J, Nielsen SN et al (2016) Maintenance therapy of childhood acute lymphoblastic leukemia revisited—should drug doses be adjusted by white blood cell, neutrophil, or lymphocyte counts? Pediatr Blood Cancer. doi:10.1002/pbc.26139

    Google Scholar 

  10. Aldrimer M, Ridefelt P, Rödöö P et al (2013) Population-based pediatric reference intervals for hematology, iron and transferrin. Scand J Clin Lab Invest 73:253–261. doi:10.3109/00365513.2013.769625

    Article  CAS  PubMed  Google Scholar 

  11. Radtke S, Zolk O, Renner B et al (2013) Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 121:5145–5153. doi:10.1182/blood-2013-01-480335

    Article  CAS  PubMed  Google Scholar 

  12. Schrøder H, Fogh K (1988) Methotrexate and its polyglutamate derivatives in erythrocytes during and after weekly low-dose oral methotrexate therapy of children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 21:145–149

    PubMed  Google Scholar 

  13. Lafolie P, Hayder S, Bj O, Peterson C (1991) Intraindividual variation in 6-mercaptopurine pharmacokinetics during oral maintenance therapy of children with acute lymphoblastic leukaemia. Eur J Clin Pharmacol 40:599–601

    CAS  PubMed  Google Scholar 

  14. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43:329–339

    Article  CAS  PubMed  Google Scholar 

  15. Karran P, Attard N (2008) Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 8:24–36. doi:10.1038/nrc2292

    Article  CAS  PubMed  Google Scholar 

  16. Hedeland RL, Hvidt K, Nersting J et al (2010) DNA incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma. Cancer Chemother Pharmacol 66:485–491. doi:10.1007/s00280-009-1184-5

    Article  CAS  PubMed  Google Scholar 

  17. Ebbesen MS, Nersting J, Jacobsen JH et al (2013) Incorporation of 6-thioguanine nucleotides into DNA during maintenance therapy of childhood acute lymphoblastic leukemia—the influence of thiopurine methyltransferase genotypes. J Clin Pharmacol 53:670–674. doi:10.1002/jcph.81

    Article  CAS  PubMed  Google Scholar 

  18. Vang SI, Schmiegelow K, Frandsen T et al (2015) Mercaptopurine metabolite levels are predictors of bone marrow toxicity following high-dose methotrexate therapy of childhood acute lymphoblastic leukaemia. Cancer Chemother Pharmacol 75:1089–1093. doi:10.1007/s00280-015-2717-8

    Article  CAS  PubMed  Google Scholar 

  19. Toft N, Birgens H, Abrahamsson J et al (2013) Risk group assignment differs for children and adults 1–45 yr with acute lymphoblastic leukemia treated by the NOPHO ALL-2008 protocol. Eur J Haematol 90:404–412. doi:10.1111/ejh.12097

    Article  PubMed  Google Scholar 

  20. Frandsen TL, Heyman M, Abrahamsson J et al (2014) Complying with the European Clinical Trials directive while surviving the administrative pressure—an alternative approach to toxicity registration in a cancer trial. Eur J Cancer 50:251–259. doi:10.1016/j.ejca.2013.09.027

    Article  PubMed  Google Scholar 

  21. Jacobsen JH, Schmiegelow K, Nersting J (2012) Liquid chromatography-tandem mass spectrometry quantification of 6-thioguanine in DNA using endogenous guanine as internal standard. J Chromatogr B Analyt Technol Biomed Life Sci 881–882:115–118. doi:10.1016/j.jchromb.2011.11.032

    Article  PubMed  Google Scholar 

  22. Shipkova M, Armstrong VW, Wieland E, Oellerich M (2003) Differences in nucleotide hydrolysis contribute to the differences between erythrocyte 6-thioguanine nucleotide concentrations determined by two widely used methods. Clin Chem 49:260–268. doi:10.1373/49.2.260

    Article  CAS  PubMed  Google Scholar 

  23. Chabner BA, Allegra CJ, Curt GA et al (1985) Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 76:907–912. doi:10.1172/JCI112088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Den Boer E, Meesters RJW, Van Zelst BD et al (2013) Measuring methotrexate polyglutamates in red blood cells: a new LC-MS/MS-based method. Anal Bioanal Chem 405:1673–1681. doi:10.1007/s00216-012-6581-7

    Article  Google Scholar 

  25. Weinshilboum R (2001) Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos 29:601–605

    CAS  PubMed  Google Scholar 

  26. Karim H, Ghalali A, Lafolie P et al (2013) Differential role of thiopurine methyltransferase in the cytotoxic effects of 6-mercaptopurine and 6-thioguanine on human leukemia cells. Biochem Biophys Res Commun 437:280–286. doi:10.1016/j.bbrc.2013.06.067

    Article  CAS  PubMed  Google Scholar 

  27. Korell J, Duffull SB, Dalrymple JM et al (2014) Comparison of intracellular methotrexate kinetics in red blood cells with the kinetics in other cell types. Br J Clin Pharmacol 77:493–497. doi:10.1111/bcp.12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karran P (2006) Thiopurines, DNA damage, DNA repair and therapy-related cancer. Br Med Bull 79–80:153–170. doi:10.1093/bmb/ldl020

    Article  PubMed  Google Scholar 

  29. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. doi:10.1038/nri3399

    Article  CAS  PubMed  Google Scholar 

  30. Sprent J (1993) Lifespans of naive, memory and effector lymphocytes. Curr Opin Immunol 5:433–438

    Article  CAS  PubMed  Google Scholar 

  31. Jacobsen JH (2012) Quantification of DNA-thioguanine in children with acute lymphoblastic leukemia. Thesis, University of Copenhagen

  32. Möricke A, Zimmermann M, Reiter A et al (2010) Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 24:265–284. doi:10.1038/leu.2009.257

    Article  PubMed  Google Scholar 

  33. Toyoda Y, Manabe A, Tsuchida M et al (2000) Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol 18:1508–1516

    CAS  PubMed  Google Scholar 

  34. Richards S, Gray R, Peto R et al (1996) Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: Overview of 42 trials involving 12,000 randomised children. Lancet 347:1783–1788. doi:10.1016/S0140-6736(96)91615-3

    Article  Google Scholar 

  35. Eyrich M, Wiegering V, Lim A et al (2009) Immune function in children under chemotherapy for standard risk acute lymphoblastic leukaemia—a prospective study of 20 paediatric patients. Br J Haematol 147:360–370. doi:10.1111/j.1365-2141.2009.07862.x

    Article  CAS  PubMed  Google Scholar 

  36. El-Chennawi FA, Al-Tonbary YA, Mossad YM, Ahmed MA (2008) Immune reconstitution during maintenance therapy in children with acute lymphoblastic leukemia, relation to co-existing infection. Hematology 13:203–209. doi:10.1179/102453308X316086

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor D, Bate J, Wade R et al (2014) Infection-related mortality in children with acute lymphoblastic leukemia: an analysis of infectious deaths on UKALL2003. Blood 124:1056–1061. doi:10.1182/blood-2014-03-560847

    Article  PubMed  Google Scholar 

  38. Gupta S, Antillon FA, Bonilla M et al (2011) Treatment-related mortality in children with acute lymphoblastic leukemia in Central America. Cancer 117:4788–4795. doi:10.1002/cncr.26107

    Article  PubMed  Google Scholar 

  39. Adam de Beaumais T, Fakhoury M, Medard Y et al (2011) Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharmacol 71:575–584. doi:10.1111/j.1365-2125.2010.03867.x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rousseau A, Marquet P (2002) Application of pharmacokinetic modelling to the routine therapeutic drug monitoring of anticancer drugs. Fundam Clin Pharmacol 16:253–262. doi:10.1046/j.1472-8206.2002.00086.x

    Article  CAS  PubMed  Google Scholar 

  41. Nersting J, Schmiegelow K (2009) Pharmacogenomics of methotrexate: moving towards individualized therapy. Pharmacogenomics 10:1887–1889. doi:10.2217/pgs.09.148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at the laboratory of Pediatric Oncology, Bonkolab, Copenhagen, for their dedicated work.

Funding

This study received financial support from The Danish Cancer Society (R56-A3093-12-S2), The Danish Childhood Cancer Foundation and The Nordic Cancer Union (79400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjeld Schmiegelow.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

Both oral and written informed consent to participate in the NOPHO ALL-2008 maintenance study were provided by both the parents (and when appropriate by the patient) according to the ICH/GCP guidelines and the Helsinki II Declaration. Further, all procedures performed involving human participants were in accordance with the ethical standards of the Danish Regional Ethical Committee (Study Approval: H-2-2010-002) and the Helsinki II declaration.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 36 kb)

280_2016_3151_MOESM2_ESM.pdf

Off-therapy hematology after termination of 6-mercaptopurine and methotrexate maintenance therapy of 50 children with acute lypmhoblastic leukemia. WBC: white blood cell count. ANC: absolute neutrophil count. ALC: absolute lymphocyte count (PDF 29 kb)

280_2016_3151_MOESM3_ESM.pdf

The mean weighted on-therapy leukocyte subsets of children treated for acute lymphoblastic leukemia in relation to the mean weighted off-therapy counts, one data point represents one child: a. The on-therapy absolute neutrophil count (ANC) plotted against the off-therapy ANC. b. The on-therapy absolute lymphocyte count (ALC) plotted against the off-therapy ALC (PDF 6 kb)

280_2016_3151_MOESM4_ESM.pdf

Early and late mean white blood cell counts (WBCs) after completion of maintenance therapy of childhood acute lymphoblastic leukemia. The off-therapy WBC measured day 200 to 360 after termination of therapy is plotted against the off-therapy WBC measured day 30 to 360 after termination of therapy. Each data point represents one child (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, S.N., Grell, K., Nersting, J. et al. Measures of 6-mercaptopurine and methotrexate maintenance therapy intensity in childhood acute lymphoblastic leukemia. Cancer Chemother Pharmacol 78, 983–994 (2016). https://doi.org/10.1007/s00280-016-3151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3151-2

Keywords

Navigation