Skip to main content

Advertisement

Log in

The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism.

Methods

The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex.

Results

PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P < 0.01). After treated by Dex, the gluconeogenesis could be restored significantly (P < 0.01) in H22 cells. The supernatant of H22 treated by Dex inhibited the migration, tube formation and endothelial permeability in HUVECs (P < 0.05). In mouse tissue, PEPCK and G6Pase were highly expressed in Dex group than control groups (P < 0.01). 11β-HSDs abnormally expressed in tumor also could be restored by Dex. Meanwhile, the density and total length of microvessels in Dex-treated group were less than those in HCC groups (P < 0.05).

Conclusions

This study explored the therapeutic efficacy of Dex in murine HCC. Dex might inhibit tumor growth and angiogenesis by augmenting the gluconeogenesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Judah F (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18. doi:10.1053/sonc.2002.37263

    Google Scholar 

  2. Zhu AX, Duda DG, Sahani DV, Jain RK (2011) HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol 8:292–301. doi:10.1038/nrclinonc.2011.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:369–375. doi:10.1101/cshperspect.a006502

    Article  Google Scholar 

  4. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022. doi:10.1158/1078-0432.CCR-06-1520

    Article  CAS  PubMed  Google Scholar 

  5. Spilsbury K, Garrett KL, Shen W-Y, Constable IJ, Rakoczy PE (2000) overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144. doi:10.1016/s0002-9440(10)64525-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Woo Sung M, Ho Sung P, Ki Hoon Y, Kyu Yun J, Myoung Jae K, Harry P, Tarnawski AS (2006) expression of angiopoietin 1, 2 and their common receptor Tie2 in human gastric carcinoma: implication for angiogenesis. J Korean Med Sci 21:272–278

    Article  Google Scholar 

  7. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor mas. Proc Natl Acad Sci 100:8258–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou S, Yang Y, Yang Y, Tao H, Li D, Zhang J, Jiang G, Fang J (2013) Combination therapy of VEGF-trap and gemcitabine results in improved anti-tumor efficacy in a mouse lung cancer model. PLoS One 8:211–236. doi:10.1371/journal.pone.0068589

    Article  Google Scholar 

  9. Craven KE, Gore J, Korc M (2015) Overview of pre-clinical and clinical studies targeting angiogenesis in pancreatic ductal adenocarcinoma. Cancer Lett. doi:10.1016/j.canlet.2015.11.047

    PubMed  Google Scholar 

  10. Yan L, Bi T, Shen G, Li Z, Wu G, Zheng W, Qian L, Gao Q (2014) Lupeol induces apoptosis and inhibits invasion in gallbladder carcinoma GBC-SD cells by suppression of EGFR/MMP-9 signaling pathway. Cytotechnology 68:123–133. doi:10.1007/s10616-014-9763-7

    Google Scholar 

  11. Weinhouse S, Warburg O, Burk D, Schade AL (1956) On respiratory impairment in cancer cells. Science 124:267–272

    Article  CAS  PubMed  Google Scholar 

  12. Koji K, Etsuro H, Tatsuya H, Masato N, Satoru S, Yuji N, Kenya Y, Hiromitsu N, Kojiro T, Kentaro Y (2011) Proliferative activity in hepatocellular carcinoma is closely correlated with glucose metabolism but not angiogenesis. J Hepatol 55:846–857. doi:10.1016/j.jhep.2011.01.038

    Article  Google Scholar 

  13. Ma R, Zhang W, Tang K, Zhang H, Zhang Y, Li D, Li Y, Xu P, Luo S, Cai W, Ji T, Katirai F, Ye D, Huang B (2013) Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat Commun 4:2508–2520. doi:10.1038/ncomms3508

    PubMed  Google Scholar 

  14. Khan MW, Chakrabarti P (2015) Gluconeogenesis combats cancer: opening new doors in cancer biology. Cell Death Dis 6:e1872. doi:10.1038/cddis.2015.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan X, Li B, Li H (2011) Xiu R (2011) Melatonin inhibits IL-1beta-induced monolayer permeability of human umbilical vein endothelial cells via Rac activation. J Pineal Res 51:220–225. doi:10.1111/j.1600-079X.2011.00882.x

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Yang C, Gu Q, Sims M, Gu W, Pfeffer LM, Yue J (2015) KLF4 promotes angiogenesis by activating VEGF signaling in human retinal microvascular endothelial cells. PLoS One 10:e0130341. doi:10.1371/journal.pone.0130341

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM (2004) 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25:831–866. doi:10.1210/er.2003-0031

    Article  CAS  PubMed  Google Scholar 

  18. Deuk KY, Keun-Gyu P, Yong-Soo L, Yun-Yong P, Don-Kyu K, Balachandar N, Won GuJ, Won-Jea C, Joohun H, In-Kyu L (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57:306–314

    Article  Google Scholar 

  19. Gladstones GH, Burton PJ, Mark PJ, Waddell BJ, Roberts P (2012) Immunolocalisation of 11beta-HSD-1 and -2, glucocorticoid receptor, mineralocorticoid receptor and Na+ K+ -ATPase during the postnatal development of the rat epididymis. J Anat 220:350–362. doi:10.1111/j.1469-7580.2012.01481.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohan CG, Viswanatha GL, Savinay G, Rajendra CE, Halemani PD (2013) 1,2,3,4,6 Penta-O- galloyl-beta-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11beta-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice. Phytomedicine 20:417–426. doi:10.1016/j.phymed.2012.12.020

    Article  CAS  PubMed  Google Scholar 

  21. Yadav L, Puri N, Rastogi V, Satpute P, Sharma V (2015) Tumour angiogenesis and angiogenic inhibitors: a review. J Clin Diagn Res 9:XE01–XE05. doi:10.7860/JCDR/2015/12016.6135

    PubMed  PubMed Central  Google Scholar 

  22. Guillaume C, Nathalie LF, Magdalena T, Bouchra HR, Jacek S, Alan G, Alexandra FC, Krzysztof K, Stéphane P, Agata M (2013) Hypoxia-regulated overexpression of soluble VEGFR2 controls angiogenesis and inhibits tumor growth. Mol Cancer Ther 13:165–178. doi:10.1158/1535-7163.MCT-13-0637

    Google Scholar 

  23. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427. doi:10.1038/nrd3455

    Article  CAS  PubMed  Google Scholar 

  24. Li Li FZ, Juan Lu, Li Tingting, Yang Hong, Chunhui Wu, Liu Yiyao (2014) Notch-1 signaling promotes the malignant features of human breast cancer through NF-kB activation. PLoS One 9:e95912. doi:10.1371/journal.pone.0095912.g001

    Article  CAS  PubMed  Google Scholar 

  25. Kang M, Jiang B, Xu B, Lu W, Guo Q, Xie Q, Zhang B, Dong X, Chen D, Wu Y (2013) Delta like ligand 4 induces impaired chemo-drug delivery and enhanced chemoresistance in pancreatic cancer. Cancer Lett 330:11–21. doi:10.1016/j.canlet.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  26. Ding XY, Ding J, Wu K, Wen W, Liu C, Yan HX, Chen C, Wang S, Tang H, Gao CK, Guo LN, Cao D, Li Z, Feng GS, Wang HY, Xu ZF (2012) Cross-talk between endothelial cells and tumor via delta-like ligand 4/Notch/PTEN signaling inhibits lung cancer growth. Oncogene 31:2899–2906. doi:10.1038/onc.2011.467

    Article  CAS  PubMed  Google Scholar 

  27. Benest AV, Kruse K, Savant S, Thomas M, Laib AM, Loos EK, Fiedler U, Augustin HG (2013) Angiopoietin-2 is critical for cytokine-induced vascular leakage. PLoS One 8:e70459. doi:10.1371/journal.pone.0070459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH (2004) Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem 279:45643–45651. doi:10.1074/jbc.M404097200

    Article  CAS  PubMed  Google Scholar 

  29. Callegari E, Elamin BK, Sabbioni S, Gramantieri L, Negrini M (2013) Role of microRNAs in hepatocellular carcinoma: a clinical perspective. Onco Targets Ther 6:1167–1178. doi:10.2147/ott.s36161

    PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Li B, Wang X, Li G, Shang R, Yang J, Wang J, Zhang M, Chen Y, Zhang Y, Zhang C, Hao P (2015) Angiotensin-(1-7) suppresses hepatocellular carcinoma growth and angiogenesis via complex interactions of angiotensin II type 1 receptor, angiotensin II type 2 receptor and mas receptor. Mol Med 21:626–636. doi:10.2119/molmed.2015.00022

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hao PP, Liu YP, Yang CY, Liang T, Zhang C, Song J, Han JK, Hou GH (2014) Evaluation of (131) I-anti-angiotensin II type 1 receptor monoclonal antibody as a reporter for hepatocellular carcinoma. PLoS One 9:e85002. doi:10.1371/journal.pone.0085002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fan Z, Sehm T, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan NE (2014) Dexamethasone alleviates tumor-associated brain damage and angiogenesis. PLoS One 9:e93264. doi:10.1371/journal.pone.0093264

    Article  PubMed  PubMed Central  Google Scholar 

  33. Villeneuve J, Galarneau H, Beaudet MJ, Tremblay P, Chernomoretz A, Vallieres L (2008) Reduced glioma growth following dexamethasone or anti-angiopoietin 2 treatment. Brain Pathol 18:401–414. doi:10.1111/j.1750-3639.2008.00139.x

    Article  CAS  PubMed  Google Scholar 

  34. Yu P, Kodadek T (2007) Dynamics of the hypoxia-inducible factor-1-vascular endothelial growth factor promoter complex. J Biol Chem 282:35035–35045. doi:10.1074/jbc.M707557200

    Article  CAS  PubMed  Google Scholar 

  35. Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83:473–483. doi:10.1016/j.exer.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  36. Khan MW, Biswas D, Ghosh M, Mandloi S, Chakrabarti S, Chakrabarti P (2015) mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discov 1:15016. doi:10.1038/cddiscovery.2015.16

    Article  Google Scholar 

  37. Clendening JW, Penn LZ (2012) Targeting tumor cell metabolism with statins. Oncogene 31:4967–4978. doi:10.1038/onc.2012.6

    Article  CAS  PubMed  Google Scholar 

  38. Birsoy K, Sabatini DM, Possemato R (2012) Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat Med 18:1022–1023. doi:10.1038/nm.2870

    Article  CAS  PubMed  Google Scholar 

  39. Meijer TW, Kaanders JH, Span PN, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18:5585–5594. doi:10.1158/1078-0432.ccr-12-0858

    Article  CAS  PubMed  Google Scholar 

  40. Yennurajalingam S, Williams JL, Chisholm G, Bruera E (2016) Effects of dexamethasone and placebo on symptom clusters in advanced cancer patients: a preliminary report. Oncologist 21:384–390. doi:10.1634/theoncologist.2014-0260

    Article  PubMed  Google Scholar 

  41. Bartneck M, Scheyda KM, Warzecha KT, Rizzo LY, Hittatiya K, Luedde T, Storm G, Trautwein C, Lammers T, Tacke F (2015) Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases. Biomaterials 37:367–382. doi:10.1016/j.biomaterials.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  42. Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma J, Lv M, Li D, Katirai F, Shen GX, Zhang G, Feng ZH, Ye D, Huang B (2012) Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 3:1282. doi:10.1038/ncomms2282

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Postgraduate innovation fund of Peking Union Medical College (No. 2014-10023-1001-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijuan Xiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, F., Liu, M., Li, B. et al. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells. Cancer Chemother Pharmacol 77, 1087–1096 (2016). https://doi.org/10.1007/s00280-016-3030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3030-x

Keywords

Navigation