Skip to main content
Log in

In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of pyrazole-based small molecule inhibitors of Mdm2/4–p53 interaction

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The interaction of p53 with its negative regulators Mdm2/4 has been widely studied (Khoury and Domling in Curr Pharm Des 18(30):4668–4678, 2012). In p53+/+ cells, expression of Mdm2/4 leads to p53 turnover, inhibition of downstream transcription, decreasing cell cycle arrest, or apoptosis. We report in vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of YH264, YH263, and WW751, three proposed small molecule inhibitors of the Mdm2/4–p53 interaction.

Methods

MTT cytotoxicity assays were performed, and alterations in proteins were examined using western blots. Mice were dosed 150 mg/kg YH264 or YH263 IV or PO QDx5. Mice were IV dosed 88, 57, or 39 mg/kg WW751 for 3, 5, or 5 days. YH264, YH263, and WW751 and metabolites were quantitated by LC–MS/MS.

Results

IC50 values for YH264, YH263, and WW751 against p53 wild-type HCT 116 cells after 72 h of incubation were 18.3 ± 2.3, 8.9 ± 0.6, and 3.1 ± 0.2 μM, respectively. Only YH264 appeared to affect p53 expression in vitro. None of the compounds affected the growth of HCT 116 xenografts in C.B-17 SCID mice. YH264 plasma half-life was 147 min; YH263 plasma half-life was 263 min; and WW751 plasma half-life was less than 120 min.

Conclusions

Despite dosing the mice at the maximum soluble doses, we could not achieve tumor concentrations equivalent to the intracellular concentrations required to inhibit cell growth in vitro. YH263 and WW751 do not appear to affect p53/Mdm2, and none of the three were active in a subcutaneous HCT 116 p53+/+ xenograft model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PBS:

Phosphate-buffered saline

LC–MS/MS:

Liquid chromatography/tandem mass spectrometry

MTT:

Methylthiazolyldiphenyl-tetrazolium bromide

AUC:

Area under the drug concentration versus time curve

C max :

Maximum peak concentration

References

  1. Khoury K, Domling A (2012) P53 Mdm2 inhibitors. Curr Pharm Des 18(30):4668–4678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 85(11):1175–1186. doi:10.1007/s00109-007-0221-2

    Article  CAS  PubMed  Google Scholar 

  3. Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26(15):3453–3459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899–2908. doi:10.1038/sj.onc.1208615

    Article  CAS  PubMed  Google Scholar 

  5. Hunziker A, Jensen MH, Krishna S (2010) Stress-specific response of the p53–Mdm2 feedback loop. BMC Syst Biol 4:94. doi:10.1186/1752-0509-4-94

    Article  PubMed Central  PubMed  Google Scholar 

  6. Zhuo YB, Bernard D, Wang S (2013) Small molecule inhibitors of MDM2–p53 and MDMX = p53 interactions as new cancer therapeutics. BioDiscov 8:1–14

    Google Scholar 

  7. Huang Y (2011) Discovery of small molecule inhibitors of protein–protein interactions (Doctoral Dissertation). University of Pittsburgh, Pittsburgh, PA

  8. Popowicz GM, Czarna A, Wolf S, Wang K, Wang W, Domling A et al (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53–MDMX/MDM2 antagonist drug discovery. Cell Cycle 9(6):1104–1111

    Article  CAS  PubMed  Google Scholar 

  9. Popowicz GM, Domling A, Holak TA (2011) The structure-based design of Mdm2/Mdmx–p53 inhibitors gets serious. Angew Chem 50(12):2680–2688. doi:10.1002/anie.201003863

    Article  CAS  Google Scholar 

  10. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282(5393):1497–1501

    Article  CAS  PubMed  Google Scholar 

  11. Domling AH, Inventor TA (2011) NOVEL P53–MDM2/P53–MDM4 antagonists to treat proliferative disease. http://www.google.com.ar/patents/WO2011106650A2?cl=ja

  12. Wei N, Chu E, Wipf P, Schmitz JC (2014) Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther 13(5):1130–1141. doi:10.1158/1535-7163.MCT-13-0880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bruce RD (1985) An up-and-down procedure for acute toxicity testing. Fundam Appl Toxicol: Off J Soc Toxicol 5(1):151–157

    Article  CAS  Google Scholar 

  14. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  15. Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM et al (2013) Discovery of RG7388, a potent and selective p53–MDM2 inhibitor in clinical development. J Med Chem 56(14):5979–5983. doi:10.1021/jm400487c

    Article  CAS  PubMed  Google Scholar 

  16. Koes D, Khoury K, Huang Y, Wang W, Bista M, Popowicz GM et al (2012) Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists. PLoS ONE 7(3):e32839. doi:10.1371/journal.pone.0032839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Shangary S, Ding K, Qiu S, Nikolovska-Coleska Z, Bauer JA, Liu M et al (2008) Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Mol Cancer Ther 7(6):1533–1542. doi:10.1158/1535-7163.MCT-08-0140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ravizza R, Gariboldi MB, Passarelli L, Monti E (2004) Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer 4:92. doi:10.1186/1471-2407-4-92

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ju J, Schmitz JC, Song B, Kudo K, Chu E (2007) Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells. Clin Cancer Res: Off J Am Assoc Cancer Res 13(14):4245–4251. doi:10.1158/1078-0432.CCR-06-2890

    Article  CAS  Google Scholar 

  20. Mahyar-Roemer M, Roemer K (2001) p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene 20(26):3387–3398. doi:10.1038/sj.onc.1204440

    Article  CAS  PubMed  Google Scholar 

  21. Meijer A, Kruyt FA, van der Zee AG, Hollema H, Le P, ten Hoor KA et al (2013) Nutlin-3 preferentially sensitises wild-type p53-expressing cancer cells to DR5-selective TRAIL over rhTRAIL. Br J Cancer 109(10):2685–2695. doi:10.1038/bjc.2013.636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project used the UPCI Clinical Pharmacology Analytical Facility (CPAF) and was supported in part by Award P30CA047904. We would like to acknowledge the support from the University of Pittsburgh, Department of Pharmaceutical Sciences, School of Pharmacy. We would also like to acknowledge the excellent animal care provided by the Hillman Cancer Center DLAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Eiseman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christner, S.M., Clausen, D.M., Beumer, J.H. et al. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of pyrazole-based small molecule inhibitors of Mdm2/4–p53 interaction. Cancer Chemother Pharmacol 76, 287–299 (2015). https://doi.org/10.1007/s00280-015-2791-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2791-y

Keywords

Navigation