Skip to main content

Advertisement

Log in

Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to Doxorubicin in tumor-bearing spontaneously hypertensive rats

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Chemotherapy with doxorubicin (Dox) causes dose-limiting cardiotoxicity. We investigated the role that gender has on cardiosensitivity to Dox treatment by evaluating reproductive hormone levels in male, castrated male (c-male), female and ovariectomized female (o-female) adult spontaneously hypertensive rats (SHRs) and expression of mitochondria-related genes in male and female adult SHRs.

Methods

SST-2 breast tumor-bearing SHRs were treated with saline, Dox, dexrazoxane (Drz) or both Dox and Drz and monitored for 14 days. Tumor size was used to monitor anticancer activity. Heart weight, cardiac lesion score and serum levels of cardiac troponin T (cTnT) were used to determine cardiotoxicity. Serum estradiol (E2) and testosterone were evaluated using electrochemiluminescence immunoassays. Expression of mitochondria-related genes was profiled in heart by MitoChip array analyses.

Results

Dox significantly reduced tumor volume (±Drz) and increased heart weight in all genders (13–30 % vs. control). Higher heart lesion scores were observed in reproductively normal animals (male 2.9, female 2.2) than in hormone-deficient animals (c-male 1.7, o-female 1.9). Lesion score and cTnT inversely correlated with hormone levels. Reduced levels of both sex hormones were observed after Dox treatment. Gene expression analyses of Dox-treated hearts showed significant differential expression of oxidative stress genes in male hearts and apoptotic genes in both male and female hearts.

Conclusions

Our results demonstrate that adult tumor-bearing male SHRs are more cardiosensitive to Dox than female or hormone-deficient animals. We provide evidence to suggest that reproductive hormones negatively regulate or are inhibited by Dox-induced cardiotoxicity and the selective cytotoxic mechanism likely functions through the greater activation of oxidative stress and apoptosis in male SHRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Octavia YTC, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy. J Mol Cell Cardiol 52:1213–1225. doi:10.1016/j.yjmcc.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  2. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34(1):106–135. doi:10.1002/med.21280

    Article  CAS  PubMed  Google Scholar 

  3. Christiansen S, Autschbach R (2006) Doxorubicin in experimental and clinical heart failure. Eur J Cardiothorac Surg 30(4):611–616. doi:10.1016/j.ejcts.2006.06.024

    Article  PubMed  Google Scholar 

  4. Kumar S, Marfatia R, Tannenbaum S, Yang C, Avelar E (2012) Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Texas Heart Inst J 39(3):424–427

    Google Scholar 

  5. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124(2):617–630. doi:10.1172/JCI72931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Phys India 52:794–804

    CAS  Google Scholar 

  7. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49(5):330–352. doi:10.1016/j.pcad.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Sinha BK, Katki AG, Batist G, Cowan KH, Myers CE (1987) Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochem Pharmacol 36(6):793–796

    Article  CAS  PubMed  Google Scholar 

  9. Doroshow JH, Locker GY, Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Investig 65(1):128–135. doi:10.1172/JCI109642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Marklund SL, Westman NG, Lundgren E, Roos G (1982) Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 42(5):1955–1961

    CAS  PubMed  Google Scholar 

  11. Ascensao A, Magalhaes J, Soares JM, Ferreira R, Neuparth MJ, Marques F, Oliveira PJ, Duarte JA (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289(2):H722–H731. doi:10.1152/ajpheart.01249.2004

    Article  CAS  PubMed  Google Scholar 

  12. Kaiserova H, Simunek T, Sterba M, den Hartog GJ, Schroterova L, Popelova O, Gersl V, Kvasnickova E, Bast A (2007) New iron chelators in anthracycline-induced cardiotoxicity. Cardiovasc Toxicol 7(2):145–150. doi:10.1007/s12012-007-0020-6

    Article  CAS  PubMed  Google Scholar 

  13. Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, Hudson MM, Kremer LC, Landy DC, Miller TL, Oeffinger KC, Rosenthal DN, Sable CA, Sallan SE, Singh GK, Steinberger J, Cochran TR, Wilkinson JD, American Heart Association Congenital Heart Defects Committee of the Council on Cardiovascular Disease in the Young CoBCSCoC, Stroke Nursing CoCR (2013) Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation 128(17):1927–1995. doi:10.1161/CIR.0b013e3182a88099

    Article  PubMed  Google Scholar 

  14. Bagnes C, Panchuk PN, Recondo G (2010) Antineoplastic chemotherapy induced QTc prolongation. Curr Drug Saf 5(1):93–96

    Article  CAS  PubMed  Google Scholar 

  15. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML (1991) Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266(12):1672–1677

    Article  CAS  PubMed  Google Scholar 

  16. Dimitrova KR, DeGroot K, Myers AK, Kim YD (2002) Estrogen and homocysteine. Cardiovasc Res 53(3):577–588

    Article  CAS  PubMed  Google Scholar 

  17. Ogita H, Node K, Kitakaze M (2003) The role of estrogen and estrogen-related drugs in cardiovascular diseases. Curr Drug Metab 4(6):497–504

    Article  CAS  PubMed  Google Scholar 

  18. Hershman DL, McBride RB, Eisenberger A, Tsai WY, Grann VR, Jacobson JS (2008) Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol 26(19):3159–3165. doi:10.1200/JCO.2007.14.1242

    Article  CAS  PubMed  Google Scholar 

  19. Biancaniello T, Meyer RA, Wong KY, Sager C, Kaplan S (1980) Doxorubicin cardiotoxicity in children. J Pediatr 97(1):45–50

    Article  CAS  PubMed  Google Scholar 

  20. Bell JR, Bernasochi GB, Varma U, Raaijmakers AJ, Delbridge LM (2013) Sex and sex hormones in cardiac stress—mechanistic insights. J Steroid Biochem Mol Biol 137:124–135. doi:10.1016/j.jsbmb.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Knapton A, Lipshultz SE, Cochran TR, Hiraragi H, Herman EH (2014) Sex-related differences in mast cell activity and doxorubicin toxicity: a study in spontaneously hypertensive rats. Toxicol Pathol 42(2):361–375. doi:10.1177/0192623313482778

    Article  CAS  PubMed  Google Scholar 

  22. Belham M, Kruger A, Mepham S, Faganello G, Pritchard C (2007) Monitoring left ventricular function in adults receiving anthracycline-containing chemotherapy. Eur J Heart Fail 9(4):409–414. doi:10.1016/j.ejheart.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  23. Lin DYTF, Tsai CH, Huang CY (2011) Mechanisms governing the protective effect of 17B-estradiol and estrogen receptors against cardiomyocyte injury. BioMedicine 1:21–28. doi:10.1016/j.biomed.2011.10.004

    Article  CAS  Google Scholar 

  24. Dickey JS, Gonzalez Y, Aryal B, Mog S, Nakamura AJ, Redon CE, Baxa U, Rosen E, Cheng G, Zielonka J, Parekh P, Mason KP, Joseph J, Kalyanaraman B, Bonner W, Herman E, Shacter E, Rao VA (2013) Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS ONE 8(8):e70575. doi:10.1371/journal.pone.0070575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Koyanagi N, Nagasu T, Fujita F, Watanabe T, Tsukahara K, Funahashi Y, Fujita M, Taguchi T, Yoshino H, Kitoh K (1994) In vivo tumor growth inhibition produced by a novel sulfonamide, E7010, against rodent and human tumors. Cancer Res 54(7):1702–1706

    CAS  PubMed  Google Scholar 

  26. Billingham ME, Mason JW, Bristow MR, Daniels JR (1978) Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 62(6):865–872

    CAS  PubMed  Google Scholar 

  27. Delongchamp R, Lee T, Velasco C (2006) A method for computing the overall statistical significance of a treatment effect among a group of genes. BMC Bioinformatics 7(Suppl 2):S11. doi:10.1186/1471-2105-7-S2-S11

    Article  PubMed Central  PubMed  Google Scholar 

  28. Stefansky W (1972) Rejecting outliers in factorial designs. Technometrics 14:469–479

    Article  Google Scholar 

  29. Herman EH, Zhang J, Knapton A, Lipshultz SE, Rifai N, Sistare F (2006) Serum cardiac troponin as a biomarker for acute myocardial injury induced by low doses of isoproterenol in rats. Cardiovasc Toxicol 6:211–221

    Article  CAS  PubMed  Google Scholar 

  30. Andersson H, Rehm S, Stanislaus D, Wood CE (2013) Scientific and regulatory policy committee (SRPC) paper: assessment of circulating hormones in nonclinical toxicity studies III. Female reproductive hormones. Toxicol Pathol 41(6):921–934. doi:10.1177/0192623312466959

    Article  CAS  PubMed  Google Scholar 

  31. Julicher RH, Sterrenberg L, Haenen GR, Bast A, Noordhoek J (1988) The effect of chronic adriamycin treatment on heart kidney and liver tissue of male and female rat. Arch Toxicol 61(4):275–281

    Article  CAS  PubMed  Google Scholar 

  32. Godoy LY, Fukushige J, Igarashi H, Matsuzaki A, Ueda K (1997) Anthracycline-induced cardiotoxicity in children with malignancies. Acta Paediatr Jpn 39(2):188–193

    Article  CAS  PubMed  Google Scholar 

  33. Hequet O, Le QH, Moullet I, Pauli E, Salles G, Espinouse D, Dumontet C, Thieblemont C, Arnaud P, Antal D, Bouafia F, Coiffier B (2004) Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol 22(10):1864–1871. doi:10.1200/JCO.2004.06.033

    Article  CAS  PubMed  Google Scholar 

  34. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB (2008) Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 26(22):3777–3784. doi:10.1200/JCO.2007.14.9401

    Article  PubMed Central  PubMed  Google Scholar 

  35. Munoz-Castaneda JR, Muntane J, Herencia C, Munoz MC, Bujalance I, Montilla P, Tunez I (2006) Ovariectomy exacerbates oxidative stress and cardiopathy induced by adriamycin. Gynecol Endocrinol 22(2):74–79. doi:10.1080/09513590500490249

    Article  CAS  PubMed  Google Scholar 

  36. Deschamps AM, Murphy E (2009) Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circ Physiol 297(5):H1806–H1813. doi:10.1152/ajpheart.00283.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Patten RD, Karas RH (2006) Estrogen replacement and cardiomyocyte protection. Trends Cardiovasc Med 16(3):69–75. doi:10.1016/j.tcm.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Wang M, Tsai BM, Kher A, Baker LB, Wairiuko GM, Meldrum DR (2005) Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia-reperfusion. Am J Physiol Heart Circ Physiol 288(1):H221–H226. doi:10.1152/ajpheart.00784.2004

    Article  CAS  PubMed  Google Scholar 

  39. Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P (1995) Testosterone relaxes rabbit coronary arteries and aorta. Circulation 91(4):1154–1160

    Article  CAS  PubMed  Google Scholar 

  40. Zaugg M, Jamali NZ, Lucchinetti E, Xu W, Alam M, Shafiq SA, Siddiqui MA (2001) Anabolic-androgenic steroids induce apoptotic cell death in adult rat ventricular myocytes. J Cell Physiol 187(1):90–95. doi:10.1002/1097-4652(2001)9999:9999<00:AID-JCP1057>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  41. Welder AA, Robertson JW, Fugate RD, Melchert RB (1995) Anabolic-androgenic steroid-induced toxicity in primary neonatal rat myocardial cell cultures. Toxicol Appl Pharmacol 133(2):328–342. doi:10.1006/taap.1995.1158

    Article  CAS  PubMed  Google Scholar 

  42. Curl CL, Wendt IR, Kotsanas G (2001) Effects of gender on intracellular. Pflugers Arch 441(5):709–716

    Article  CAS  PubMed  Google Scholar 

  43. Altamirano F, Oyarce C, Silva P, Toyos M, Wilson C, Lavandero S, Uhlen P, Estrada M (2009) Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J Endocrinol 202(2):299–307. doi:10.1677/JOE-09-0044

    Article  CAS  PubMed  Google Scholar 

  44. Patten RD, Pourati I, Aronovitz MJ, Baur J, Celestin F, Chen X, Michael A, Haq S, Nuedling S, Grohe C, Force T, Mendelsohn ME, Karas RH (2004) 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res 95(7):692–699. doi:10.1161/01.RES.0000144126.57786.89

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Eugene Herman (FDA/CDER) and Rodney Levine (NIH/NHLBI) for helpful discussions, and Karlecia Corbett and Raissa Dantas (FDA/CDER) for assistance with animal procedures. We gratefully acknowledge funding support by the United States Food and Drug Administration Office of Women’s Health grant. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the United States Food and Drug Administration and the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the United States Government.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ashutosh Rao.

Additional information

Yanira Gonzalez and Kaytee L. Pokrzywinski have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl Fig 1

Change in body weight throughout 14-day drug treatment. SHR/SST-2s were separated by gender (n=20): male (A), c-male (B), female (C) and o-female (D) and administered either saline (circle), Dox [(10 mg/kg, iv), square], Drz [(50 mg/kg, ip) triangle] or a combination of Drz+Dox (downwards triangle) (n=5). Prior to the drug treatment, an initial body weight was taken for every animal. Body weights (1) were measured again after 4, 7, 11 and 14 days exposure to the corresponding treatment. Points denote the average percent change in weight, positive values indicate net growth and negative values indicate weight loss. Error bars represent one standard deviation from the mean. (EPS 18591 kb)

Suppl Fig 2

Change in tumor volume throughout 14-day drug treatment. SHR/SST-2s were separated by gender (n=20): male (A), c-male (B), female (C) and o-female (D) and administered either saline (circle), Dox [(10 mg/kg, iv), square], Drz [(50 mg/kg, ip) triangle] or a combination of Drz+Dox (downwards triangle) (n=5). Prior to the drug treatment, an initial body weight was taken for every animal. Tumor volumes (2) were recorded at days 7, 11 and 14. Points denote the average percent change in volume. Error bars represent one standard deviation from the mean. (EPS 17751 kb)

Suppl Fig 3

Cardiac mitochondria-related gene expression. Male (A) and female (B) SHR/SST-2 cardiac tissues were analyzed for changes in mitochondria-related gene expression in saline and Dox treatments. In male (A) and female (B) SHR/SST-2 hearts, 918 genes were analyzed. Genes that were not significantly expressed are light (circle) and genes in which expression significantly changed (p < 0.05) are dark (circle). Genes with greater than 2-fold changes in expression are dark square with overlaid light circle. Points represent the –log10 p-value vs the fold change in expression. Values above 1.0 indicate up-regulation, while values below 1.0 indicate down-regulation. (EPS 3933 kb)

Suppl Fig 4

Significantly up-regulated mitochondria-related genes in cardiac tissue. Each bar represents the –log10 (p-value) of each statistically significant individual gene (saline vs. Dox) based on gene ontology family for both male (blue) and female (pink) SHR/SST-2s. Specific genes are on the y-axis, while gene ontology families are to the left of the gene name. Gene families are in alphabetical order. If a gene belongs to more than one family, it is listed either to the right of the individual bar or to the left of the gene family. Statistical significance was determined at an alpha of 0.05. (EPS 5030 kb)

Suppl Fig 5

Significantly down-regulated mitochondria-related genes (A) and genes with greater than 2-fold change in expression (B) in cardiac tissue. For down-regulated genes (A), each bar represents the –log10 p-value of each statistically significant individual gene (saline vs. Dox), based on gene ontology family for both male (blue) and female (pink) SHR/SST-2s. Statistical significance was determined at an alpha of 0.05. For genes with greater than 2-fold change in expression (B), each bar depicts the fold change in expression between saline and Dox-treated male SHR/SST-2s (blue). For both panels, specific genes are on the y-axis, while gene ontology families are to the left of the gene name. Gene families are in alphabetical order. (EPS 4900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, Y., Pokrzywinski, K.L., Rosen, E.T. et al. Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to Doxorubicin in tumor-bearing spontaneously hypertensive rats. Cancer Chemother Pharmacol 76, 447–459 (2015). https://doi.org/10.1007/s00280-015-2786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2786-8

Keywords

Navigation