Skip to main content

Advertisement

Log in

Dose selection of siltuximab for multicentric Castleman’s disease

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Siltuximab is a monoclonal antibody that binds to interleukin (IL)-6 with high affinity and specificity; C-reactive protein (CRP) is an acute-phase protein induced by IL-6. CRP suppression is an indirect measurement of IL-6 activity. Here, modeling and simulation of the pharmacokinetic (PK)/pharmacodynamic (PD) relationship between siltuximab and CRP were used to support dose selection for multicentric Castleman’s disease (CD).

Methods

PK/PD modeling was applied to explore the relationship between siltuximab PK and CRP suppression following intravenous siltuximab infusion in 47 patients with B cell non-Hodgkin’s lymphoma (n = 17), multiple myeloma (n = 13), or CD (n = 17). Siltuximab was administered as 2.8, 5.5, or 11 mg/kg q2wks, 11 mg/kg q3wks, or 5.5 mg/kg weekly. Simulations of studied or hypothetical siltuximab dosage regimens (15 mg/kg q4wks) were also performed to evaluate maintenance of CRP suppression below the cutoff value of 1 mg/L.

Results

A two-compartment PK model and an inhibitory indirect response PD model adequately described the serum siltuximab and CRP concentration–time profiles simultaneously. PD parameter estimates were physiologically plausible. For all disease types, simulations showed that 11 mg/kg q3wks or 15 mg/kg q4wks would reduce serum CRP to below 1 mg/L after the second dose and throughout the treatment period.

Conclusions

PK/PD modeling was used to select doses for further development of siltuximab in multicentric CD. The dosing recommendation was also supported by the observed efficacy dose–response relationship. CRP suppression in the subsequent randomized multicentric CD study was in agreement with the modeling predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265:621–636

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334:297–314

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Gadient RA, Otten UH (1997) Interleukin-6 (IL-6)—a molecule with both beneficial and destructive potentials. Prog Neurobiol 52:379–390

    Article  CAS  PubMed  Google Scholar 

  4. Ganz T, Nemeth E (2009) Iron sequestration and anemia of inflammation. Semin Hematol 46:387–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441:431–436

    Article  CAS  PubMed  Google Scholar 

  6. Grivennikov S, Karin M (2008) Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13:7–9

    Article  CAS  PubMed  Google Scholar 

  7. Kishimoto T (1989) The biology of interleukin-6. Blood 74:1–10

    CAS  PubMed  Google Scholar 

  8. Klein B, Zhang XG, Lu ZY, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863–872

    CAS  PubMed  Google Scholar 

  9. Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE, Shima Y, Tai YT, Rosen S, Avraham S, Kharbanda S, Anderson KC (2000) SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 275:27845–27850

    CAS  PubMed  Google Scholar 

  10. Kurzrock R (2001) Cytokine deregulation in cancer. Biomed Pharmacother 55:543–547

    Article  CAS  PubMed  Google Scholar 

  11. Kurzrock R, Redman J, Cabanillas F, Jones D, Rothberg J, Talpaz M (1993) Serum interleukin 6 levels are elevated in lymphoma patients and correlate with survival in advanced Hodgkin’s disease and with B symptoms. Cancer Res 53:2118–2122

    CAS  PubMed  Google Scholar 

  12. Casper C (2005) The aetiology and management of Castleman disease at 50 years: translating pathophysiology to patient care. Br J Haematol 129:3–17

    Article  PubMed  Google Scholar 

  13. van Rhee F, Fayad L, Voorhees P, Furman R, Lonial S, Borghaei H, Sokol L, Crawford J, Cornfeld M, Qi M, Qin X, Herring J, Casper C, Kurzrock R (2010) Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman’s disease. J Clin Oncol 28:3701–3708

    Article  PubMed  Google Scholar 

  14. Katsume A, Miyai T, Suzuki H, Moriguchi Y, Kawata H, Tatsumi T, Suematsu S, Kishimoto T, Ohsugi Y (1997) Interleukin-6 overexpression cannot generate serious disorders in severe combined immunodeficiency mice. Clin Immunol Immunopathol 82:117–124

    Article  CAS  PubMed  Google Scholar 

  15. Katsume A, Saito H, Yamada Y, Yorozu K, Ueda O, Akamatsu K, Nishimoto N, Kishimoto T, Yoshizaki K, Ohsugi Y (2002) Anti-interleukin 6 (IL-6) receptor antibody suppresses Castleman’s disease like symptoms emerged in IL-6 transgenic mice. Cytokine 20:304–311

    Article  CAS  PubMed  Google Scholar 

  16. Anderson KC, Kyle RA, Dalton WS, Landowski T, Shain K, Jove R, Hazlehurst L, Berenson J (2000) Multiple myeloma: new insights and therapeutic approaches. Hematology Am Soc Hematol Educ Program 2000:147–165

    Article  Google Scholar 

  17. Seideman J, Peritt D (2002) A novel monoclonal antibody screening method using the Luminex-100 microsphere system. J Immunol Methods 267:165–171

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Wang X, Doddareddy R, Fink D, McIntosh T, Davis HM, Zhou H (2014) Mechanistic pharmacokinetic/target engagement/pharmacodynamic (PK/TE/PD) modeling in deciphering interplay between a monoclonal antibody and its soluble target in cynomolgus monkeys. AAPS J 16:129–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Trikha M, Corringham R, Klein B, Rossi JF (2003) Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9:4653–4665

    PubMed Central  CAS  PubMed  Google Scholar 

  20. van Zaanen HC, Lokhorst HM, Aarden LA, Rensink HJ, Warnaar SO, van der Lelie J, van Oers MH (1998) Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol 102:783–790

    Article  PubMed  Google Scholar 

  21. Coventry BJ, Ashdown ML, Quinn MA, Markovic SN, Yatomi-Clarke SL, Robinson AP (2009) CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool? J Transl Med 7:102

    Article  PubMed Central  PubMed  Google Scholar 

  22. Legouffe E, Rodriguez C, Picot MC, Richard B, Klein B, Rossi JF, Commes T (1998) C-reactive protein serum level is a valuable and simple prognostic marker in non Hodgkin’s lymphoma. Leuk Lymphoma 31:351–357

    CAS  PubMed  Google Scholar 

  23. Pelliniemi TT, Irjala K, Mattila K, Pulkki K, Rajamaki A, Tienhaara A, Laakso M, Lahtinen R, for the Finnish Leukemia Group (1995) Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Blood 85:765–771

    CAS  PubMed  Google Scholar 

  24. Nishimoto N, Sasai M, Shima Y, Nakagawa M, Matsumoto T, Shirai T, Kishimoto T, Yoshizaki K (2000) Improvement in Castleman’s disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95:56–61

    CAS  PubMed  Google Scholar 

  25. Kurzrock R, Voorhees PM, Casper C, Furman RR, Fayad L, Lonial S, Borghaei H, Jagannath S, Sokol L, Usmani SZ, van de Velde H, Qin X, Puchalski TA, Hall B, Reddy M, Qi M, van Rhee F (2013) A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clin Cancer Res 19:3659–3670

    Article  CAS  PubMed  Google Scholar 

  26. Rossi JF, Negrier S, James ND, Kocak I, Hawkins R, Davis H, Prabhakar U, Qin X, Mulders P, Berns B (2010) A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br J Cancer 103:1154–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Puchalski T, Prabhakar U, Jiao Q, Berns B, Davis HM (2010) Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clin Cancer Res 16:1652–1661

    Article  CAS  PubMed  Google Scholar 

  28. Xu C, Han C, Marini J, Ford J, Marciniak S, Lopez M Jr, Frederick B, de Vries D, Bandekar R, Davis HM, Zhou H, Puchalski T (2014) A phase 1, randomized study to assess the pharmacokinetic comparability of siltuximab derived from two different cell lines in healthy subjects. Clin Pharmacol Drug Dev 3(4):328–334

    Article  CAS  Google Scholar 

  29. Marshall JL (2012) Maximum-tolerated dose, optimum biologic dose, or optimum clinical value: dosing determination of cancer therapies. J Clin Oncol 30:2815–2816

    Article  CAS  PubMed  Google Scholar 

  30. Takimoto CH, Ng CM, Puchalski T (2011) Pharmacokinetics and pharmacodynamics. In: DeVita VTJ, Lawrence TS, Rosenberg SA (eds) DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology, 9th edn. Lippincott Williams & Wilkins, Philadelphia, pp 360–369

    Google Scholar 

  31. Thongtang N, Diffenderfer MR, Ooi EM, Asztalos BF, Dolnikowski GG, Lamon-Fava S, Schaefer EJ (2013) Effects of atorvastatin on human C-reactive protein metabolism. Atherosclerosis 226:466–470

    Article  CAS  PubMed  Google Scholar 

  32. Mauger JF, Levesque J, Paradis ME, Bergeron N, Tchernof A, Couture P, Lamarche B (2008) Intravascular kinetics of C-reactive protein and their relationships with features of the metabolic syndrome. J Clin Endocrinol Metab 93:3158–3164

    Article  CAS  PubMed  Google Scholar 

  33. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19:972–978

    Article  CAS  PubMed  Google Scholar 

  34. Husain T, Kim D (2002) C-reactive protein and erythrocyte sedimentation rate in orthopaedics. Univ Pa Orthop J 15:13–16

    Google Scholar 

  35. Hutchinson WL, Koenig W, Frohlich M, Sund M, Lowe GD, Pepys MB (2000) Immunoradiometric assay of circulating C-reactive protein: age-related values in the adult general population. Clin Chem 46:934–938

    CAS  PubMed  Google Scholar 

  36. van Rhee F, Wong RS, Munshi N, Rossi J-F, Ke X-Y, Fosså A, Simpson D, Capra M, Liu T, Hsieh RK, Goh YT, Zhu J, Cho S-G, Ren H, Cavet J, Bandekar R, Rothman M, Puchalski TA, Reddy M, van de Velde H, Vermeulen J, Casper C (2014) Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol 15:966–974

    Article  PubMed  Google Scholar 

  37. Wong R, Casper C, Munshi N, Ke X, Fosså A, Simpson D, Capra M, Liu T, Hsieh RK, Goh YT, Zhu J, Cho S-G, Ren H, Cavet J, Bandekar R, Rothman M, Puchalski TA, Chaturvedi S, van de Velde H, Vermeulen J, van Rhee F (2013) A multicenter, randomized, double-blind, placebo-controlled study of the efficacy and safety of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with multicentric Castleman’s disease. Abstract presented at: 55th American Society of Hematology annual meeting and exposition, 9 Dec 2013, New Orleans, LA

  38. Casper C, Chaturvedi S, Munshi N, Wong R, Qi M, Schaffer M, Bandekar R, Huang Y, Hall B, Vermeulen J, Reddy M, van Rhee F (2014) Inflammatory and anaemia-related markers in a phase 2, randomised, double-blind, placebo-controlled study of siltuximab (anti-IL-6 monoclonal antibody) in multicentric Castleman’s disease patients. Poster presented at: 19th congress of the European Hematology Association; 12–15 June 2014, Milan, Italy

Download references

Acknowledgments

This study was funded and supported by Janssen Research & Development, LLC. The authors thank Robert Achenbach and Gianna Paone of Janssen Scientific Affairs, LLC, for editorial and submission support.

Conflict of interest

All authors are or were employees of Janssen Research & Development, LLC, at the time of the study and own(ed) stock in Johnson & Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Puchalski.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, C.L., Xie, L., Bandekar, R. et al. Dose selection of siltuximab for multicentric Castleman’s disease. Cancer Chemother Pharmacol 75, 1037–1045 (2015). https://doi.org/10.1007/s00280-015-2720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2720-0

Keywords

Navigation