Skip to main content
Log in

Resistance to the antiproliferative effect induced by a short-chain ceramide is associated with an increase of glucosylceramide synthase, P-glycoprotein, and multidrug-resistance gene-1 in cervical cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Ceramide is glycosylated to glucosylceramide or lactosylceramide, and this glycosylation is a novel multidrug-resistance (MDR) mechanism. In this work, a short-chain ceramide (C6), lactosylceramide (LacCer), and an inhibitor of ceramide glycosylation (d-threo-1-phenyl-2-decanoylamino-3-1-propanol, PDMP) were evaluated on the proliferation of cervical cancer cells. The participation of glucosylceramide synthase (GCS), P-glycoprotein (P-gp), and multidrug-resistance gene-1 (MDR-1) in the resistance to the antiproliferative effect induced by C6 was also evaluated.

Methods

Cell proliferation was determined by crystal violet staining. GCS and MDR-1 mRNA expression was evaluated by real-time RT-PCR assay. GCS and P-gp protein expressions, as well as Rhodamine 123 uptake, which is a functional test for P-gp efflux activity, were determined by flow cytometry.

Results

C6 inhibited proliferation of CaLo and CasKi cells with an IC50 of 2.5 μM; however, 50 % proliferation of ViBo cells was inhibited with 10 μM. LacCer increased the proliferation of all cells. When cells were treated with PDMP plus C6, no additional effect on antiproliferation induced by C6 was observed in CaLo and CasKi cells; however, proliferation diminished in comparison with C6 alone in ViBo cells. C6 increased GCS and MDR-1 expression in all cells, as well as P-gp expression in CasKi cells.

Conclusions

Cells that have more capacity to glycosylate ceramide and express a higher level of GCS, MDR-1, and P-gp, are more resistant to the antiproliferative effect induced by C6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C6:

N-hexanoyl-d-sphingosine

GlcCer:

Glucosylceramide

MDR:

Multidrug resistance

MDR-1:

Multidrug-resistance gene-1

GCS:

Glucosylceramide synthase

P-gp:

P-glycoprotein

HPV:

Human papillomavirus

LacCer:

Lactosylceramide

PDMP:

d-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol

References

  1. Carpinteiro A, Dumitru C, Schenck M et al (2008) Ceramide-induced cell death in malignant cells. Cancer Lett 264:1–10

    Article  PubMed  CAS  Google Scholar 

  2. Radin NS (2001) Killing cancer cells by poly-drug elevation of ceramide levels. A hypothesis whose time has come? Eur J Biochem 268:193–204

    Article  PubMed  CAS  Google Scholar 

  3. Sietsma H, Veldman RJ, Kok JW (2001) The involvement of sphingolipids in multidrug resistance. J Membr Biol 181:153–162

    PubMed  CAS  Google Scholar 

  4. Lavie Y, Cao H, Bursten SL et al (1996) Accumulation of glucosylceramides in multidrug resistant cancer cells. J Biol Chem 271:19530–19536

    Article  PubMed  CAS  Google Scholar 

  5. Lucci A, Cho WI, Han TY (1998) Glucosylceramide: a marker for multiple drug resistant cancers. Anticancer Res 18:475–480

    PubMed  CAS  Google Scholar 

  6. Gouazé-Andersson V, Yu JY, Kreitenberg AJ et al (2007) Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 771:1407–1417

    Article  Google Scholar 

  7. Palacio-Mejía LF, Rangel-Gómez G, Hernández-Avila M et al (2003) Cervical cancer, a disease of poverty: mortality differences between urban and rural areas in Mexico. Salud Publica Mex 45:S315–S325

    Article  PubMed  Google Scholar 

  8. López-Marure R, Gutiérrez G, Mendoza C et al (2002) Ceramide promotes the death of human cervical tumor cells in the absence of biochemical and morphological markers of apoptosis. Biochem Biophys Res Commun 293:1028–1036

    Article  PubMed  Google Scholar 

  9. Gutiérrez G, Mendoza C, Montaño LF et al (2007) Ceramide induces early and late apoptosis in human papilloma virus+ cervical cancer cells by inhibiting reactive oxygen species decay, diminishing the intracellular concentration of glutathione and increasing nuclear factor-kappaB translocation. Anticancer Drugs 18:149–159

    Article  PubMed  Google Scholar 

  10. Bernard B, Fest T, Prétet JL et al (2001) Staurosporine-induced apoptosis of HPV positive and negative human cervical cancer cells from different points in the cell cycle. Cell Death Differ 8:234–244

    Article  PubMed  CAS  Google Scholar 

  11. Monroy A, Rangel R, Rocha L et al (1992) Establecimiento de siete estirpes celulares provenientes de biopsias de cérvix normal y con cáncer cérvico-uterino y sus diferentes contenidos y localizaciones de desmogleína-1. Oncología 7:69–76

    Google Scholar 

  12. Kueng W, Silber E, Eppenberger U (1989) Quantification of cells cultured on 96-well plates. Anal Biochem 182:16–19

    Article  PubMed  CAS  Google Scholar 

  13. Rogalska A, Szwed M, Rychlik B (2014) The connection between the toxicity of anthracyclines and their ability to modulate the P-glycoprotein-mediated transport in A549, HepG2, and MCF-7 cells. Sci World J 19:819548

    Google Scholar 

  14. Liu YY, Han TY, Giuliano AE et al (2001) Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 15:719–730

    Article  PubMed  CAS  Google Scholar 

  15. Chatterjee S, Pandey A (2008) The Yin and Yang of lactosylceramide metabolism: implications in cell function. Biochim Biophys Acta 1780:370–382

    Article  PubMed  CAS  Google Scholar 

  16. Chatterjee S (1991) Lactosylceramide stimulates aortic smooth muscle cell proliferation. Biochem Biophys Res Commun 181:554–561

    Article  PubMed  CAS  Google Scholar 

  17. Liu YY, Gupta V, Patwardhan GA et al (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 9:145

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weinstein RS, Kuszak JR, Kluskens LF et al (1990) P-glycoprotein in pathology: the multidrug resistance gene family in humans. Hum Pathol 21:34–48

    Article  PubMed  CAS  Google Scholar 

  19. Bellamy WT, Dalton WS, Dorr RT (1990) The clinical relevance of multidrug resistance. Cancer Invest 8:545–560

    CAS  Google Scholar 

  20. Ludescher C, Thaler J, Drach D et al (1992) Detection of activity of P-glycoprotein in human tumour samples using rhodamine 123. Br J Haematol 82:161–168

    Article  PubMed  CAS  Google Scholar 

  21. Kolesnick R, Golde D (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328

    Article  PubMed  CAS  Google Scholar 

  22. Obeid LM, Hannun YA (1995) Ceramide: a stress signal and mediator of growth suppression and apoptosis. J Cell Biochem 58:191–198

    Article  PubMed  CAS  Google Scholar 

  23. Ohanian J, Ohanian V (2001) Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 58:2053–2068

    Article  PubMed  CAS  Google Scholar 

  24. Ogretmen B, Hannun YA (2001) Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat 4:368–377

    Article  PubMed  CAS  Google Scholar 

  25. Liu YY, Han TY, Giuliano AE et al (1999) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–1146

    Article  PubMed  CAS  Google Scholar 

  26. Imgrund S, Hartmann D, Farwanah H et al (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284:33549–33560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Friedrich RE, Punke C, Reymann A (2004) Expression of multi-drug resistance genes (mdr1, mrp1, bcrp) in primary oral squamous cell carcinoma. In Vivo 18:133–147

    PubMed  CAS  Google Scholar 

  28. Mu H, Wang X, Wang H et al (2009) Lactosylceramide promotes cell migration and proliferation through activation of ERK1/2 in human aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 297:H400–H408

    Article  PubMed  CAS  Google Scholar 

  29. Morjani H, Aouali N, Belhoussine R et al (2001) Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer 94:57–65

    Article  Google Scholar 

  30. Olshefski RS, Ladisch S (2001) Glucosylceramide synthase inhibition enhances vincristine-induced cytotoxicity. Int J Cancer 93:131–138

    Article  PubMed  CAS  Google Scholar 

  31. Sietsma H, Veldman RJ, Kolk D et al (2000) 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizers neuroblastoma cells for taxol and vincristine. Clin Cancer Res 6:942–948

    PubMed  CAS  Google Scholar 

  32. Shabbits JA, Mayer LD (2002) P-glycoprotein modulates ceramide-mediated sensitivity of human breast cancer cells to tubulin-binding anticancer drugs. Mol Cancer Ther 1:205–213

    PubMed  CAS  Google Scholar 

  33. Senchenkov A, Litvak DA, Cabot MC (2001) Targeting ceramide metabolism—a strategy for overcoming drug resistance. J Natl Cancer Inst 93:347–357

    Article  PubMed  CAS  Google Scholar 

  34. Veldman RJ, Klappe K, Hinrichs J et al (2002) Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus. FASEB J 16:1111–1113

    PubMed  CAS  Google Scholar 

  35. Prinetti A, Basso L, Appierto V et al (2003) Altered sphingolipid metabolism in N-(4-hydroxyphenyl)-retinamide-resistant A2780 human ovarian carcinoma cells. J Biol Chem 278:5574–5583

    Article  PubMed  CAS  Google Scholar 

  36. Zhang X, Li J, Qiu Z et al (2009) Co-suppression of MDR1 (multidrug resistance 1) and GCS (glucosylceramide synthase) restores sensitivity to multidrug resistance breast cancer cells by RNA interference (RNAi). Cancer Biol Ther 8:1117–1121

    Article  PubMed  CAS  Google Scholar 

  37. Xie P, Shen YF, Shi YP et al (2008) Overexpression of glucosylceramide synthase in associated with multidrug resistance of leukemia cells. Leuk Res 32:475–480

    Article  PubMed  CAS  Google Scholar 

  38. Gouazé V, Liu YY, Prickett CS et al (2005) Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 65:3861–3867

    Article  PubMed  Google Scholar 

  39. Sun YL, Zhou GY, Li KN et al (2006) Suppression of glucosylceramide synthase by RNA interference reverses multidrug resistance in human breast cancer cells. Neoplasma 53:1–8

    PubMed  CAS  Google Scholar 

  40. Patwardhan GA, Zhang QJ, Yin D et al (2009) A new mixed-backbone oligonucleotide against glucosylceramide synthase sensitizes multidrug-resistant tumors to apoptosis. PLoS One 4:e6938

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Rosa MF, Sillence D, Ackerley C et al (2004) Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis. J Biol Chem 279:7867–7876

    Article  PubMed  Google Scholar 

  42. Chapman JV, Gouazé-Andersson V, Karimi R et al (2011) P-glycoprotein antagonists confer synergistic sensitivity to short-chain ceramide in human multidrug-resistant cancer cells. Exp Cell Res 317:1736–1745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Brianne O’Leary for critical reading of the manuscript. This investigation was financially supported by the CONACyT, Project Number 182341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca López-Marure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Iglesias, G., Hurtado, Y., Palma-Lara, I. et al. Resistance to the antiproliferative effect induced by a short-chain ceramide is associated with an increase of glucosylceramide synthase, P-glycoprotein, and multidrug-resistance gene-1 in cervical cancer cells. Cancer Chemother Pharmacol 74, 809–817 (2014). https://doi.org/10.1007/s00280-014-2552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2552-3

Keywords

Navigation