Skip to main content
Log in

Clinical pharmacology of an atrasentan and docetaxel regimen in men with hormone-refractory prostate cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted to evaluate potential pharmacokinetic interactions between docetaxel and atrasentan as part of a phase I/II clinical trial.

Methods

Patients with prostate cancer were treated with intravenous docetaxel (60–75 mg/m2) every 3 weeks and oral atrasentan (10 mg) daily starting on day 3 of cycle 1 and then given continuously. The pharmacokinetics of both drugs were evaluated individually (cycle 1, day 1 for docetaxel; day 21 for atrasentan) and in combination (cycle 2, day 1 for both drugs). Pharmacogenomics of alpha-1-acid glycoprotein (AAG) were also explored.

Results

Paired pharmacokinetic data sets for both drugs were evaluable in 21 patients. Atrasentan was rapidly absorbed and plasma concentrations varied over a fourfold range at steady state within a typical patient. The median apparent oral clearance of atrasentan was 17.4 L/h in cycle 1 and was not affected by docetaxel administration (p = 0.9). Median systemic clearance of docetaxel was 51.1 L/h on the first cycle and significantly slower (p = 0.01) compared with that obtained during co-administration of atrasentan, 61.6 L/h. Docetaxel systemic clearance in cycle 1 was 70.0 L/h in patients homozygous for a variant allele in AAG compared with 44.5 L/h in those with at least one wild-type allele (p = 0.03).

Conclusion

Genetic polymorphism in AAG may explain some inter-patient variability in docetaxel pharmacokinetics. The systemic clearance of docetaxel is increased by approximately 21 % when given concomitantly with atrasentan; however, atrasentan pharmacokinetics does not appear to be influenced by docetaxel administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    Article  CAS  PubMed  Google Scholar 

  2. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    Article  CAS  PubMed  Google Scholar 

  3. Opgenorth TJ, Adler AL, Calzadilla SV, Chiou WJ, Dayton BD, Dixon DB et al (1996) Pharmacological characterization of A-127722: an orally active and highly potent ETA-selective receptor antagonist. J Pharmacol Exp Ther 276:473–481

    CAS  PubMed  Google Scholar 

  4. Armstrong AJ, Creel P, Turnbull J, Moore C, Jaffe TA, Haley S, Petros W, Yenser S, Gockerman JP, Sleep D, Hurwitz H, George DJ (2008) A phase I-II study of docetaxel and atrasentan in men with castration-resistant metastatic prostate cancer. Clin Cancer Res 14(19):6270–6276

    Article  CAS  PubMed  Google Scholar 

  5. Pinto A, Merino M, Zamora P, Redondo A, Castelo B, Espinosa E (2012) Targeting the endothelin axis in prostate carcinoma. Tumour Biol 33:421–426

    Article  PubMed  Google Scholar 

  6. Carducci MA, Saad F, Abrahamsson PA, Dearnaley DP, Schulman CC, North SA et al (2007) A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer 110:1959–1966

    Article  CAS  PubMed  Google Scholar 

  7. Del Bufalo D, Di Castro V, Biroccio A, Varmi M, Salani D, Rosano L et al (2002) Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol Pharmacol 61:524–532

    Article  PubMed  Google Scholar 

  8. Banerjee S, Hussain M, Wang Z, Saliganan A, Che M, Bonfil D et al (2007) In vitro and in vivo molecular evidence for better therapeutic efficacy of ABT-627 and Taxotere combination in prostate cancer. Cancer Res 67:3818–3826

    Article  CAS  PubMed  Google Scholar 

  9. Fujita K (2006) Cytochrome P450 and anticancer drugs. Curr Drug Metab 7:23–37

    Article  CAS  PubMed  Google Scholar 

  10. Jimeno A, Carducci M (2004) Atrasentan: targeting the endothelin axis in prostate cancer. Expert Opin Investig Drugs 13:1631–1640

    Article  CAS  PubMed  Google Scholar 

  11. Data on file, Abbott Pharmacetuitcals

  12. Bruno R, Hille D, Riva A, Vivier N, Vivier N, ten Bokkel Huinnink WW, van Oosterom AT et al (1998) Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 16:187–196

    CAS  PubMed  Google Scholar 

  13. Bruno R, Olivares R, Berille J, Chaikin P, Vivier N, Hammershaimb L et al (2003) α-1-Acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin Cancer Res 9:1077–1082

    CAS  PubMed  Google Scholar 

  14. Huang Q, Wang GJ, Sun JG, Hu XL, Lu YH, Zhang Q (2007) Simultaneous determination of docetaxel and ketoconazole in rat plasma by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1009–1018

    Article  CAS  PubMed  Google Scholar 

  15. Bryan PD, Sapochak LB, Tames MM, Padley RJ, El-Shourbagy TA (2001) Determination of atrasentan by high performance liquid chromatography with fluorescence detection in human plasma. Biomed Chromatogr 15:525–533

    Article  CAS  PubMed  Google Scholar 

  16. Xiong H, Carr RA, Locke CS, Katz DA, Achari R, Doan TT et al (2007) Dual effects of rifampin on the pharmacokinetics of atrasentan. J Clin Pharmacol 47:423–429

    Article  CAS  PubMed  Google Scholar 

  17. Puisset F, Chatelut E, Sparreboom A, Delord JP, Berchery D, Lochon I et al (2007) Dexamethasone as a probe for CYP3A4 metabolism: evidence of gender effect. Cancer Chemother Pharmacol 60:305–308

    Article  CAS  PubMed  Google Scholar 

  18. Nallani SC, Goodwin B, Buckley AR, Buckley DJ, Desai PB (2004) Differences in the induction of cytochrome P450 3A4 by taxane anticancer drugs, docetaxel and paclitaxel, assessed employing primary human hepatocytes. Cancer Chemother Pharmacol 54:219–229

    CAS  PubMed  Google Scholar 

  19. Verhaar MC, Grahn AY, Van Weerdt AW, Honing ML, Morrison PJ, Yang YP, Padley RJ, Rabelink TJ (2000) Pharmacokinetics and pharmacodynamic effects of ABT-627, an oral ETA selective endothelin antagonist, in humans. Br J Clin Pharmacol 49:562–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Samara E, Dutta S, Cao G, Granneman GR, Dordal MS, Padley RJ (2001) Single-dose pharmacokinetics of atrasentan, an endothelin-A receptor antagonist. J Clin Pharmacol 41:397–403

    Article  CAS  PubMed  Google Scholar 

  21. Ryan CW, Vogelzang NJ, Vokes EE, Kindler HL, Undevia SD, Humerickhouse R et al (2004) Dose-ranging study of the safety and pharmacokinetics of atrasentan in patients with refractory malignancies. Clin Cancer Res 10:4406–4411

    Article  CAS  PubMed  Google Scholar 

  22. Back DJ, Tjia JF, Abel SM (1992) Azoles, allylamines and drug metabolism. Br J Dermatol 126(Suppl 39):14–18

    Article  PubMed  Google Scholar 

  23. Chiappori AA, Haura E, Rodriguez FA, Boulware D, Kapoor R, Neuger AM et al (2008) Phase I/II study of atrasentan, an endothelin A receptor antagonist, in combination with paclitaxel and carboplatin as first-line therapy in advanced non-small cell lung cancer. Clin Cancer Res 14:1464–1469

    Article  CAS  PubMed  Google Scholar 

  24. Weiss J, Haefeli WE (2011) Interaction potential of the endothelin-A receptor antagonist atrasentan with drug transporters and drug-metabolising enzymes assessed in vitro. Cancer Chemother Pharmacol 68:1093–1098

    Article  CAS  PubMed  Google Scholar 

  25. Katz DA, Carr R, Grimm DR, Xiong H, Holley-Shanks R et al (2006) Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics. Clin Pharmacol Ther 79:186–196

    Article  CAS  PubMed  Google Scholar 

  26. Urien S, Barre J, Morin C, Paccaly A, Montay G, Tillement JP (1996) Docetaxel serum protein binding with high affinity to alpha 1-acid glycoprotein. Invest New Drugs 14:147–151

    CAS  PubMed  Google Scholar 

  27. Rolan PE (1994) Plasma protein binding displacement interactions-why are they still regarded as clinically important? Br J Clin Pharmac 37:125–128

    Article  CAS  Google Scholar 

  28. MacKichan JJ (2006) Influence of protein binding and use of unbound (free) drug concentrations. In: Burton ME, Shaw LM, Schentag JJ, Evans WE (eds) Applied pharmacokinetics and pharmacodynamics—principles of therapeutic drug monitoring. Lippincott Williams & Wilkins, Philadelphia, pp 82–120

    Google Scholar 

  29. Baker SD, Li J, ten Tije AJ, Figg WD, Graveland W, Verweij J, Sparreboom A (2005) Relationship of systemic exposure to unbound docetaxel and neutropenia. Clin Pharmacol Ther 77:43–53

    Article  CAS  PubMed  Google Scholar 

  30. Bruno R, Vivler N, Vergniol JC, De Phillips SL, Montay G, Sheiner LB (1996) A population pharmacokinetic model for docetaxel (Taxotere): model building and validation. J Pharmacokinet Biopharm 24:153–172

    Article  CAS  PubMed  Google Scholar 

  31. Minami H, Kawada K, Sasaki Y, Igarashi T, Saeki T, Tahara M et al (2006) Pharmacokinetics and pharmacodynamics of protein-unbound docetaxel in cancer patients. Cancer Sci 97:235–241

    Article  CAS  PubMed  Google Scholar 

  32. Fitos I, Visy J, Zsila F, Mády G, Simonyi M (2006) Selective binding of imatinib to the genetic variants of human alpha 1-acid glycoprotein. Biochim Biophys Acta 1760:1704–1712

    Article  CAS  PubMed  Google Scholar 

  33. Li J-H, Xu J-Q, Cao X-M, Ni L, Li Y, Zhuang YY, Gong JB (2002) Influence of the ORM1 phenotypes on serum unbound concentration and protein binding of quinidine. Clin Chim Acta 317:85–92

    Article  CAS  PubMed  Google Scholar 

  34. Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J, Wadelius C et al (2007) Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 121:23–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the patients and Duke Cancer Center Clinical Trials staff for participation in this study. This study was supported in part by an investigator initiated grant from Abbott Pharmaceuticals and NIH Grant 5P20RR016477 to the West Virginia IDeA Network for Biomedical Research Excellence. Dr. Petros also received support as the Mylan Chair of Pharmacology at West Virginia University.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Petros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Younis, I.R., George, D.J., McManus, T.J. et al. Clinical pharmacology of an atrasentan and docetaxel regimen in men with hormone-refractory prostate cancer. Cancer Chemother Pharmacol 73, 991–997 (2014). https://doi.org/10.1007/s00280-014-2432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2432-x

Keywords

Navigation