Skip to main content

Advertisement

Log in

The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Erlotinib, N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy) quinazolin-4-amine is approved for the treatment for non-small cell lung cancer and pancreatic cancer. Because erlotinib is metabolized predominately by CYP3A4, co-administration of compounds that increase CYP3A4 activity may alter the efficacy and safety of erlotinib therapy. Two phase I studies were conducted in healthy male subjects to evaluate the effect of pre- or co-administered rifampicin, a CYP3A4 inducer, on the pharmacokinetics of erlotinib.

Methods

Study 1 included Groups A (erlotinib 150 mg days 1 and 15, rifampicin 600 mg days 8–14) and B (erlotinib 150 mg days 1 and 15) in a parallel group study design. Study 2 subjects received erlotinib 150 mg day 1, erlotinib 450 mg day 15, and rifampicin 600 mg days 8–18. The primary endpoint in each study was the ratio of exposure (AUC0–∞ and C max) between days 1 and 15. Urinary cortisol metabolic induction ratios were determined in Study 1 for Group A subjects only.

Results

In Study 1, the geometric mean ratios of AUC0–∞ and C max were 33 and 71 %, respectively, and the mean cortisol metabolic index increased from 7.4 to 27.0, suggesting cytochrome P450 (CYP) enzyme induction. In Study 2, the geometric mean ratios for AUC0–∞ and C max were 19 and 34 % (when dose adjusted from 450 to 150 mg erlotinib), respectively, a greater relative decrease than observed in Study 1.

Conclusions

Erlotinib exposure (AUC0–∞ and C max) was reduced after pre- or concomitant dosing with rifampicin. Doses of ≥450 mg erlotinib may be necessary to compensate for concomitant medications with strong CYP3A4 enzyme induction effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shepherd FA, Rodrigues PJ, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132

    Article  CAS  PubMed  Google Scholar 

  2. Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966

    Article  CAS  PubMed  Google Scholar 

  3. Cappuzzo F, Ciuleanu T, Stelmakh L et al (2010) Erlotinib as maintenance treatment in advanced non-small cell lung cancer: a multicentre, randomised, placebo controlled phase 3 study. Lancet Oncol 11(6):521–529

    Article  CAS  PubMed  Google Scholar 

  4. Tarceva® Full Prescribing Information, Astellas Pharma US, Inc., and Genentech, Inc, May 2013

  5. Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13(3):239–246

    Article  CAS  PubMed  Google Scholar 

  6. National Comprehensive Cancer Network (2013) NCCN Clinical practice Guidelines in Oncology; Non-Small-Cell Lung Cancer Version 2.2013. http://www.nccn.com

  7. Hamilton M, Wolf JL, Rusk J et al (2006) Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res 12(7 Pt 1):2166–2171

    Article  CAS  PubMed  Google Scholar 

  8. Rakhit A, Pantze MP, Fettner S, Jones HM, Charoin JE, Reik M et al (2008) The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: computer based simulation (SimCYP™) predicts in vivo metabolic inhibition. Eur J Clin Pharmacol 64:31–41

    Article  CAS  PubMed  Google Scholar 

  9. Calvert H, Twelves C, Ranson M, Anthoney A, Plummer R, Fettner S et al. (2005) The effect of erlotinib (Tarceva™) on CYP3A4 activity, as quantified by the erythromycin breath test and oral midazolam kinetics in cancer patients—preliminary results. J Clin Oncol ASCO Ann Mtg Proceed 23(16s, Part I of II): 3076

    Google Scholar 

  10. Ohnhaus E, Breckenridge AM, Park BK (1989) Urinary excretion of 6β-hydroxycortisol and the time course measurement of enzyme induction in man. Eur J Clin Pharmacol 36:39–46

    Article  CAS  PubMed  Google Scholar 

  11. Ling J, Johnson KA, Miao Z, Rakhit A, Pantze MP, Hamilton M et al (2006) Metabolism and excretion of erlotinib, a small molecule inhibitor of epidermal growth factor receptor tyrosine kinase, in healthy male volunteers. Drug Metab Dispos 34(3):420–426

    CAS  PubMed  Google Scholar 

  12. Tanaka C, Yin OQ, Smith T et al (2011) Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 51(1):75–83

    Article  CAS  PubMed  Google Scholar 

  13. Yeo KP, Lowe SL, Lim MT et al (2005) Pharmacokinetics of ruboxistaurin are significantly altered by rifampicin-mediated CYP3A4 induction. Br J Clin Pharmacol 61(2):200–210

    Article  PubMed Central  Google Scholar 

  14. Saima S, Furuie K, Yoshimoto H et al (2002) The effects of rifampicin on the pharmacokinetics and pharmacodynamics of orally administered nilvadipine to healthy subjects. Br J Clin Pharmacol 53(2):203–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Israili ZH, Rogers CM, El-Attar H (1987) Pharmacokinetics of antituberculosis drugs in patients. J Clin Pharmacol 27:78–83

    Article  CAS  PubMed  Google Scholar 

  16. Correia MA (2003) Hepatic cytochrome P450 degradation: mechanistic diversity of the cellular sanitation brigade. Drug Metab Rev 35(2 & 3):107–143

    Article  CAS  PubMed  Google Scholar 

  17. Reitman ML, Chu X, Cai X et al (2011) Rifampin’s acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug-drug interaction trial design. Clin Pharmacol Ther 89:234–242

    Article  CAS  PubMed  Google Scholar 

  18. O’Reilly RA (1975) Interaction of chronic daily warfarin therapy and rifampicin. Ann Intern Med 83:506–508

    Article  PubMed  Google Scholar 

  19. Lam JL, Shugarts SB, Okochi H, Benet LZ (2006) Elucidating the effect of final-day dosing of rifampin in induction studies on hepatic drug disposition and metabolism. J Pharmacol Exp Ther 319(2):864–870

    Article  CAS  PubMed  Google Scholar 

  20. Kirby BJ, Collier AC, Kharasch ED et al (2012) Complex drug interactions of the HIV protease inhibitors 3: effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion. Drug Metab Dispos 40:610–616

    Article  CAS  PubMed  Google Scholar 

  21. Guidance for industry: drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations Draft Guidance February 2012. Accessed 9 Apr 2013 http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

  22. Elmeliegy MA, Carcaboso AM, Tagen M et al (2011) Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation. Clin Cancer Res 17(1):89–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Li Y, Xu J, Lai G et al (2012) Metabolic switching of BILR 355 in the presence of ritonavir. Drug Metab Dispos 40(6):1130–1137

    Article  CAS  PubMed  Google Scholar 

  24. Shi Z, Peng XX, Kim IW et al (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67(22):11012–11020

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Cusatis G, Brahmer J (2007) Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 6(3):432–438

    Article  CAS  PubMed  Google Scholar 

  26. Hidalgo M, Siu LL, Nemunaitis J et al (2001) Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 19(13):3267–3279

    CAS  PubMed  Google Scholar 

  27. Prados MD, Lamborn KR, Chang S et al (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol 8(1):67–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Abbas R, Fettner S, Riek M, Bulsara S, Pantze M, Hamilton M, Frohna P, Rakhit A (2003) A drug-drug interaction study to evaluate the effect of rifampicin on the pharmacokinetics of the EGF receptor tyrosine kinase inhibitor, erlotinib, in healthy subjects. Proc Am Soc Clin Oncol 22:137 (abstr 548)

    Google Scholar 

Download references

Acknowledgments

Funding for the clinical studies described was provided by F-Hoffman La Roche (Study 1) and OSI Pharmaceuticals Inc (Study 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert L. Lum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, M., Wolf, J.L., Drolet, D.W. et al. The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects. Cancer Chemother Pharmacol 73, 613–621 (2014). https://doi.org/10.1007/s00280-014-2390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2390-3

Keywords

Navigation