Skip to main content
Log in

Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cisplatin-treated mice develop a persistent pain state and a condition wherein otherwise innocuous tactile stimuli evoke pain behavior, e.g., tactile allodynia. The allodynia is associated with an up-regulation of activation transcription factor 3 (ATF3) in the dorsal root ganglia (DRG), a factor, which is activated by Toll-like receptors (TLRs). Accordingly, we sought to examine the role of the TLR signaling cascade on allodynia, weight, and changes in DRG ATF3 in cisplatin-treated mice.

Methods

Cisplatin (2.3 mg/kg/day × 6 injections every other day) or vehicle was administered to male wild-type (WT) C57BL/6, Tlr3 /, Tlr4 /, Myd88 /, Trif lps2 and Myd88/Trif lps2 mice. We examined allodynia and body weight at intervals over 30 days, when we measured DRG ATF3 by immunostaining.

Results

(1) WT cisplatin-treated mice showed tactile allodynia from day 3 through day 30. (2) The Myd88/Trif lps2 mice did not show allodynia. (3) In Tlr3 / , Tlr4 /, and Myd88 / mice, withdrawal thresholds were elevated toward normal versus WT cisplatin-treated mice, but remained decreased as compared to vehicle mice. (4) In Trif lps2 mice, cisplatin allodynia showed a delayed onset, but persisted. (5) In Tlr3 −/−, Tlr4 / , Myd88 /, and Myd88/Trif lps2 mice, the increase in DRG ATF3 was abolished. (6) Weight loss occurred during cisplatin administration, which was exacerbated in mutant as compared to WT mice.

Conclusions

Cisplatin evoked a persistent allodynia and DRG ATF3 expression in WT mice, but these effects were reduced in mice with TLR signaling deficiency. TLR signaling may thus be involved in the mechanisms leading to the cisplatin polyneuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Trigg ME, Higa GM (2010) Chemotherapy-induced nausea and vomiting: antiemetic trials that impacted clinical practice. J Oncol Pharm Pract 16(4):233–244. doi:10.1177/1078155209354655

    Article  CAS  PubMed  Google Scholar 

  2. Windebank AJ, Grisold W (2008) Chemotherapy-induced neuropathy. J Peripher Nerv Syst 13(1):27–46. doi:10.1111/j.1529-8027.2008.00156.x

    Article  CAS  PubMed  Google Scholar 

  3. McKeage MJ (1995) Comparative adverse effect profiles of platinum drugs. Drug Saf 13(4):228–244

    Article  CAS  PubMed  Google Scholar 

  4. Park SB, Krishnan AV, Lin CS, Goldstein D, Friedlander M, Kiernan MC (2008) Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies. Curr Med Chem 15(29):3081–3094

    Article  CAS  PubMed  Google Scholar 

  5. Park HJ, Stokes JA, Pirie E, Skahen J, Shtaerman Y, Yaksh TL (2013) Persistent hyperalgesia in the cisplatin-treated mouse as defined by threshold measures, the conditioned place preference paradigm, and changes in dorsal root ganglia activated transcription factor 3: the effects of gabapentin, ketorolac, and etanercept. Anesth Analg 116(1):224–231. doi:10.1213/ANE.0b013e31826e1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Peters CM, Jimenez-Andrade JM, Kuskowski MA, Ghilardi JR, Mantyh PW (2007) An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res 1168:46–59. doi:10.1016/j.brainres.2007.06.066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hai T, Wolford CC, Chang YS (2010) ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr 15(1):1–11

    Article  CAS  PubMed  Google Scholar 

  8. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650. doi:10.1016/j.immuni.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  9. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364. doi:10.1038/nri2079

    Article  PubMed  Google Scholar 

  10. Boivin A, Pineau I, Barrette B, Filali M, Vallieres N, Rivest S, Lacroix S (2007) Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 27(46):12565–12576. doi:10.1523/JNEUROSCI.3027-07.2007

    Article  CAS  PubMed  Google Scholar 

  11. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58(3):253–263. doi:10.1002/glia.20928

    PubMed  Google Scholar 

  12. Liu T, Gao YJ, Ji RR (2012) Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull 28(2):131–144. doi:10.1007/s12264-012-1219-5

    Article  PubMed Central  PubMed  Google Scholar 

  13. Stokes JA, Corr M, Yaksh TL (2013) Spinal Toll-like receptor signaling and nociceptive processing: regulatory balance between TIRAP and TRIF cascades mediated by TNF and IFNbeta. Pain. doi:10.1016/j.pain.2013.01.012

    PubMed  Google Scholar 

  14. Vera G, Chiarlone A, Martin MI, Abalo R (2006) Altered feeding behaviour induced by long-term cisplatin in rats. Auton Neurosci 126–127:81–92. doi:10.1016/j.autneu.2006.02.011

    Article  PubMed  Google Scholar 

  15. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. doi:10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  16. Abalo R, Cabezos PA, Vera G, Lopez-Perez AE, Martin MI (2013) Cannabinoids may worsen gastric dysmotility induced by chronic cisplatin in the rat. Neurogastroenterol Motil 25 (5):373–382, e292. doi:10.1111/nmo.12073

    Google Scholar 

  17. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175(7):4320–4330. http://www.jimmunol.org/content/175/7/4320

    CAS  PubMed  Google Scholar 

  18. Qi J, Buzas K, Fan H, Cohen JI, Wang K, Mont E, Klinman D, Oppenheim JJ, Howard OM (2011) Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol 186(11):6417–6426. doi:10.4049/jimmunol.1001241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kuang X, Huang Y, Gu HF, Zu XY, Zou WY, Song ZB, Guo QL (2012) Effects of intrathecal epigallocatechin gallate, an inhibitor of Toll-like receptor 4, on chronic neuropathic pain in rats. Eur J Pharmacol 676(1–3):51–56. doi:10.1016/j.ejphar.2011.11.037

    Article  CAS  PubMed  Google Scholar 

  20. Hai T, Hartman MG (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273(1):1–11. doi:10.1016/S0378-1119(01)00551-0

    Article  CAS  PubMed  Google Scholar 

  21. Ivanavicius SP, Ball AD, Heapy CG, Westwood FR, Murray F, Read SJ (2007) Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: increased expression of ATF-3 and pharmacological characterisation. Pain 128(3):272–282. doi:10.1016/j.pain.2006.12.022

    Article  CAS  PubMed  Google Scholar 

  22. Jimenez-Andrade JM, Peters CM, Mejia NA, Ghilardi JR, Kuskowski MA, Mantyh PW (2006) Sensory neurons and their supporting cells located in the trigeminal, thoracic and lumbar ganglia differentially express markers of injury following intravenous administration of paclitaxel in the rat. Neurosci Lett 405(1–2):62–67. doi:10.1016/j.neulet.2006.06.043

    Article  CAS  PubMed  Google Scholar 

  23. Khasabova IA, Khasabov S, Paz J, Harding-Rose C, Simone DA, Seybold VS (2012) Cannabinoid type-1 receptor reduces pain and neurotoxicity produced by chemotherapy. J Neurosci 32(20):7091–7101. doi:10.1523/JNEUROSCI.0403-12.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Braz JM, Basbaum AI (2010) Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli. Pain 150(2):290–301. doi:10.1016/j.pain.2010.05.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cao H, Zhang YQ (2008) Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 32(5):972–983. doi:10.1016/j.neubiorev.2008.03.009

    Article  PubMed  Google Scholar 

  26. Sung YJ, Chiu DT, Ambron RT (2006) Activation and retrograde transport of protein kinase G in rat nociceptive neurons after nerve injury and inflammation. Neuroscience 141(2):697–709. doi:10.1016/j.neuroscience.2006.04.033

    Article  CAS  PubMed  Google Scholar 

  27. Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL (2008) TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 205(11):2609–2621. doi:10.1084/jem.20081370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Erridge C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87(6):989–999. doi:10.1189/jlb.1209775

    Article  CAS  PubMed  Google Scholar 

  29. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158(3):1007–1020. doi:10.1016/j.neuroscience.2008.07.067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439. doi:10.1038/nri2565

    Article  CAS  PubMed  Google Scholar 

  31. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18(6):911–917. doi:10.1038/nm.2749

    Article  CAS  PubMed  Google Scholar 

  32. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161. doi:10.1038/ni.1836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103. doi:10.1038/nature08512

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, Date I, Yoshino T, Ohtsuka A, Mori S, Nishibori M (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42(5):1420–1428. doi:10.1161/STROKEAHA.110.598334

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107. doi:10.1038/nature08780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shibasaki M, Sasaki M, Miura M, Mizukoshi K, Ueno H, Hashimoto S, Tanaka Y, Amaya F (2010) Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain 149(3):514–521. doi:10.1016/j.pain.2010.03.023

    Article  CAS  PubMed  Google Scholar 

  37. Badary OA, Awad AS, Sherief MA, Hamada FM (2006) In vitro and in vivo effects of ferulic acid on gastrointestinal motility: inhibition of cisplatin-induced delay in gastric emptying in rats. World J Gastroenterol 12(33):5363–5367

    CAS  PubMed  Google Scholar 

  38. Isambert N, Fumoleau P, Paul C, Ferrand C, Zanetta S, Bauer J, Ragot K, Lizard G, Jeannin JF, Bardou M (2013) Phase I study of OM-174, a lipid A analogue, with assessment of immunological response, in patients with refractory solid tumors. BMC Cancer 13:172. doi:10.1186/1471-2407-13-172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sussman DA, Santaolalla R, Strobel S, Dheer R, Abreu MT (2012) Cancer in inflammatory bowel disease: lessons from animal models. Curr Opin Gastroenterol 28(4):327–333. doi:10.1097/MOG.0b013e328354cc36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Biron CA (2001) Interferons alpha and beta as immune regulators–a new look. Immunity 14(6):661–664. doi:10.1016/S1074-7613(01)00154-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from National Institutes of Health: NS16541 and DA02110.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony L. Yaksh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.J., Stokes, J.A., Corr, M. et al. Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother Pharmacol 73, 25–34 (2014). https://doi.org/10.1007/s00280-013-2304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2304-9

Keywords

Navigation