Skip to main content

Advertisement

Log in

Reversibility of regorafenib effects in hepatocellular carcinoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Multikinase growth inhibitors inhibit their target kinases with varying potency. Patients often require lower doses or therapy breaks due to drug toxicities. To evaluate the effects of drug withdrawal on hepatocellular carcinoma cells after incubation with growth-inhibitory concentrations of regorafenib, cell growth, migration and invasion, and signaling were examined.

Methods

Cell proliferation, motility, and invasion were analyzed by MTT, wound healing, and invasion assays, respectively, and MAPK pathway protein markers were analyzed by Western blot.

Results

After regorafenib removal, cell growth, migration, and invasion recovered. Repeated drug exposure resulted in changes in cell growth patterns. Recovery could be blocked by sub-growth-inhibitory concentrations of either doxorubicin or vitamin K1. Recovery of growth was associated with increased phospho-JNK, phospho-p38, and phospho-STAT3 levels. The recovery of growth, migration, and signaling were blocked by a JNK inhibitor.

Conclusions

Removal of regorafenib from growth-inhibited cells resulted in a JNK-dependent recovery of growth and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad T, Eisen T (2004) Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin Cancer Res 10:6388S–6392S

    Article  PubMed  CAS  Google Scholar 

  2. Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, Montalto G (2012) Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 11:2843–2855

    Article  PubMed  CAS  Google Scholar 

  3. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  PubMed  CAS  Google Scholar 

  4. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66:11851–11858

    Article  PubMed  CAS  Google Scholar 

  5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, SHARP Investigators Study Group (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    Article  PubMed  CAS  Google Scholar 

  6. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34

    Article  PubMed  CAS  Google Scholar 

  7. Otsuka T, Eguchi Y, Kawazoe S, Yanagita K, Ario K, Kitahara K, Kawasoe H, Kato H, Mizuta T, The saga liver cancer study group (2012) Skin toxicities and survival in advanced hepatocellular carcinoma patients treated with sorafenib. Hepatol Res 42:879–886

    Article  PubMed  CAS  Google Scholar 

  8. Edmonds K, Hull D, Spencer-Shaw A, Koldenhof J, Chrysou M, Boers-Doets C, Molassiotis A (2012) Strategies for assessing and managing the adverse events of sorafenib and other targeted therapies in the treatment of renal cell and hepatocellular carcinoma: recommendations from a European nursing task group. Eur J Oncol Nurs 16:172–184

    Article  PubMed  Google Scholar 

  9. Porta C, Paglino C, Imarisio I, Bonomi L (2007) Uncovering Pandora’s vase: the growing problem of new toxicities from novel anticancer agents. The case of sorafenib and sunitinib. Clin Exp Med 7:127–134

    Article  PubMed  CAS  Google Scholar 

  10. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH, Zopf D (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129:245–255

    Article  PubMed  CAS  Google Scholar 

  11. Strumberg D, Schultheis B (2012) Regorafenib and cancer. Expert Opinion Invest Drugs 21:879–889

    Article  CAS  Google Scholar 

  12. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, Hohenberger P, Leahy M, von Mehren M, Joensuu H, Badalamenti G, Blackstein M, Le Cesne A, Schöffski P, Maki RG, Bauer S, Nguyen BB, Xu J, Nishida T, Chung J, Kappeler C, Kuss I, Laurent D, Casali PG, GRID study investigators (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:295–302

    Article  PubMed  CAS  Google Scholar 

  13. Grothey A, Cutsem EV, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouché O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D, CORRECT Study Group (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303–312

    Article  PubMed  CAS  Google Scholar 

  14. Brahimi F, Rachid Z, Qiu Q, McNamee JP, Li YJ, Tari AM, Jean-Claude BJ (2004) Multiple mechanisms of action of ZR2002 in human breast cancer cells: a novel combi-molecule designed to block signaling mediated by the ERB family of oncogenes and to damage genomic DNA. Int J Cancer 112:484–491

    Article  PubMed  CAS  Google Scholar 

  15. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, Shalinsky DR, Hu-Lowe DD, McDonald DM (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621

    Article  PubMed  CAS  Google Scholar 

  16. Steeghs N, Rabelink TJ, Op’t Roodt J, Batman E, Cluitmans FH, Weijl NI, de Koning E, Gelderblom H (2010) Reversibility of capillary density after discontinuation of bevacizumab treatment. Ann Oncol 21:1100–1105

    Article  PubMed  CAS  Google Scholar 

  17. Carr BI, Cavallini A, Lippolis C, D’Alessandro R, Messa C, Refolo MG, Tafaro A (2013) Fluoro-Sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence and recovery. J Cell Physiol 228:292–297

    Article  PubMed  CAS  Google Scholar 

  18. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug tolerant state in cancer cell subpopulations. Cell 141:69–80

    Article  PubMed  CAS  Google Scholar 

  19. Carr BI, D’Alessandro R, Refolo MG, Iacovazzi PA, Lippolis C, Messa C, Cavallini A, Correale M, Di Carlo A (2013) Effects of low concentrations of Regorafenib and Sorafenib on human HCC cell AFP, migration, invasion and growth in vitro. J Cell Physiol 228:1344–1350

    Article  PubMed  CAS  Google Scholar 

  20. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  PubMed  CAS  Google Scholar 

  21. Cao H, Phan H, Yang LX (2012) Improved chemotherapy for hepatocellular carcinoma. Anticancer Res 32:1379–1386

    PubMed  CAS  Google Scholar 

  22. Varela M, Real MI, Burrel M, Forner A, Sala M, Brunet M, Ayuso C, Castells L, Montaná X, Llovet JM, Bruix J (2007) Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatology 46:474–481

    Article  CAS  Google Scholar 

  23. Wei G, Wang M, Hyslop T, Wang Z, Carr BI (2010) Vitamin K enhancement of Sorafenib-mediated HCC cell growth inhibition in vitro and in vivo. Int J Cancer 127:2949–2958

    Article  PubMed  CAS  Google Scholar 

  24. Paraiso KH, Fedorenko IV, Cantini LP, Munko AC, Hall M, Sondak VK, Messina JL, Flaherty KT, Smalley KS (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102:1724–1730

    Article  PubMed  CAS  Google Scholar 

  25. Gedaly R, Angulo P, Chen C, Creasy KT, Spear BT, Hundley J, Daily MF, Shah M, Evers BM (2012) The role of PI3 K/mTOR inhibition in combination with sorafenib in hepatocellular carcinoma treatment. Anticancer Res 32:2531–2536

    PubMed  CAS  Google Scholar 

  26. Ibrahim N, Yu Y, Walsh WR, Yang JL (2012) Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies. Oncol Rep 27:1303–1311

    PubMed  CAS  Google Scholar 

  27. Kudo M (2012) Targeted therapy for liver cancer: updated review in 2012. Curr Cancer Drug Targets 12:1062–1072

    PubMed  CAS  Google Scholar 

  28. Garlick DS, Greiner DL, Davis RJ (2011) The role of JNK in the development of hepatocellular carcinoma. Genes Dev 25:634–636

    Article  PubMed  Google Scholar 

  29. Bode AM, Dong Z (2007) The functional contrariety of JNK. Mol Carcinog 46:591–598

    Article  PubMed  CAS  Google Scholar 

  30. Lee YC, Chang AY, Lin-Feng MH, Tsou WI, Chiang IH, Lai MZ (2012) Paxillin phosphorylation by JNK and p38 is required for NFAT activation. Eur J Immunol 42:2165–2175

    Article  PubMed  CAS  Google Scholar 

  31. Zhang YH, Wang SQ, Sun CR, Wang M, Wang B, Tang JW (2011) Inhibition of JNK1 expression decreases migration and invasion of mouse hepatocellular carcinoma cell line in vitro. Med Oncol 28:966–972

    Article  PubMed  CAS  Google Scholar 

  32. Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-dependent protein kinase-like endoplasmatic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66:1702–1710

    Article  PubMed  CAS  Google Scholar 

  33. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathway in cancer development. Nature Rev Cancer 9:537–549

    Article  CAS  Google Scholar 

  34. Kim JH, Lee SC, Ro J, Kang HS, Kim HS, Yoon S (2010) Jnk signaling pathway-mediated regulation of Stat3 activation is linked to the development of doxorubicin resistance in cancer cell lines. Biochem Pharmacol 79:373–380

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant support: This work was supported (in part) by NIH Grant [# 82723 (BIC)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian I. Carr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

280_2013_2269_MOESM1_ESM.tif

Fig. 1S. Western blot of apoptosis and autophagy markers and electron microscopy analysis. A. Apoptosis and autophagy in Hep3B cells from T0 to T4. Up-regulation of anti-apoptotic proteins (pBcl-2 and Bcl-xL) and decrease in Beclin-1 and LC3 II as autophagy markers. B. Representative electron micrographs of Hep3B cells during recovery. 1 – Cells treated with regorafenib 5 µM for 72h (T0). White arrow shows large clumps of heterochromatin and black arrow typical autophagosome. (Bar = 2μm; magnification x4,400). 2 – Cells during reversibility (T3). The autophagy or apoptotic structures are not present in the cytoplasm. (Bar = 2μm; magnification x4,400 ). 3 – High magnification of autophagosome of image (1) (black arrow) (Bar = 0.5μm; magnification x11,000) (TIFF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Alessandro, R., Refolo, M.G., Lippolis, C. et al. Reversibility of regorafenib effects in hepatocellular carcinoma cells. Cancer Chemother Pharmacol 72, 869–877 (2013). https://doi.org/10.1007/s00280-013-2269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2269-8

Keywords

Navigation