Skip to main content
Log in

MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Defective expression of the mismatch repair protein MSH3 is frequently detected in colon cancer, and down-regulation of its expression was found to decrease sensitivity to platinum compounds or poly(ADP-ribose) polymerase inhibitors (PARPi) monotherapy. We have investigated whether MSH3 transfection in MSH3-deficient colon cancer cells confers resistance to oxaliplatin or PARPi and whether their combination restores chemosensitivity.

Methods

MSH3-deficient/MLH1-proficient colon cancer HCT116MLH1 cells were transfected with the MSH3 cDNA cloned into the pcDNA3.1(−) vector. MSH3/MLH1-deficient HCT116, carrying MLH1 and MSH3 mutations on chromosome 3 and 5, respectively, and HCT116 in which wild-type MLH1 (HCT116+3), MSH3 (HCT116+5) or both genes (HCT116+3+5) were introduced by chromosome transfer were also tested. Sensitivity to oxaliplatin and to PARPi was evaluated by analysis of clonogenic survival, cell proliferation, apoptosis and cell cycle.

Results

MSH3 transfection in HCT116 cells did not confer resistance to oxaliplatin or PARPi monotherapy. MSH3-proficient HCT116+5 or HCT116+3+5 cells, which were more resistant to oxaliplatin and PARPi in comparison with their MSH3-deficient counterparts, expressed higher levels of the nucleotide excision repair ERCC1 and XPF proteins, involved in the resistance to platinum compounds, and lower PARP-1 levels. In all cases, PARPi increased sensitivity to oxaliplatin.

Conclusions

Restoring of MSH3 expression by cDNA transfection, rather than by chromosome transfer, did not affect colon cancer sensitivity to oxaliplatin or PARPi monotherapy; PARP-1 levels seemed to be more crucial for the outcome of PARPi monotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehmé A, Christen RD, Howell SB (1996) The role of DNA mismatch repair in platinum drug resistance. Cancer Res 56:4881–4886

    PubMed  CAS  Google Scholar 

  2. Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC, Chaney SG (1998) The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res 58:3579–3585

    PubMed  CAS  Google Scholar 

  3. Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14:1291–1295. doi:10.1158/1078-0432.CCR-07-2238

    Article  PubMed  CAS  Google Scholar 

  4. Carethers JM, Chauhan DP, Fink D, Nebel S, Bresalier RS, Howell SB, Boland CR (1999) Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117:123–131

    Article  PubMed  CAS  Google Scholar 

  5. Meyers M, Wagner MW, Hwang HS, Kinsella TJ, Boothman DA (2001) Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res 61:5193–5201

    PubMed  CAS  Google Scholar 

  6. Sinicrope FA, Foster NR, Thibodeau SN, Marsoni S, Monges G, Labianca R, Kim GP, Yothers G, Allegra C, Moore MJ, Gallinger S, Sargent DJ (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103:863–875. doi:10.1093/jnci/djr153

    Article  PubMed  CAS  Google Scholar 

  7. Plaschke J, Krüger S, Jeske B, Theissig F, Kreuz FR, Pistorius S, Saeger HD, Iaccarino I, Marra G, Schackert HK (2004) Loss of MSH3 protein expression is frequent in MLH1-deficient colorectal cancer and is associated with disease progression. Cancer Res 64:864–870. doi:10.1158/0008-5472.CAN-03-2807

    Article  PubMed  CAS  Google Scholar 

  8. Plaschke J, Preußler M, Ziegler A, Schackert HK (2012) Aberrant protein expression and frequent allelic loss of MSH3 in colorectal cancer with low-level microsatellite instability. Int J Colorectal Dis 27:911–919

    Article  PubMed  Google Scholar 

  9. Wang Q, Zhang H, Guerrette S, Chen J, Mazurek A, Wilson T, Slupianek A, Skorski T, Fishel R, Greene MI (2001) Adenosine nucleotide modulates the physical interaction between hMSH2 and BRCA1. Oncogene 20:4640–4649

    Article  PubMed  CAS  Google Scholar 

  10. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C, A’Hern R, Tutt A, Ashworth A, Stone J, Carmichael J, Schellens JH, de Bono JS, Kaye SB (2010) Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2:2512–2519. doi:10.1200/JCO.2009.26.9589

    Article  Google Scholar 

  11. Dann RB, DeLoia JA, Timms KM, Zorn KK, Potter J, Flake DD 2nd, Lanchbury JS, Krivak TC (2012) BRCA1/2 mutations and expression: response to platinum chemotherapy in patients with advanced stage epithelial ovarian cancer. Gynecol Oncol 125:677–682. doi:10.1016/j.ygyno.2012.03.006

    Article  PubMed  CAS  Google Scholar 

  12. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917. doi:10.1038/nature03443

    Article  PubMed  CAS  Google Scholar 

  13. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921. doi:10.1038/nature03445

    Article  PubMed  CAS  Google Scholar 

  14. Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS (2011) Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle 10:1192–1199

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi M, Koi M, Balaguer F, Boland CR, Goel A (2011) MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor. J Biol Chem 286:12157–12165. doi:10.1074/jbc.M110.198804

    Article  PubMed  CAS  Google Scholar 

  16. Papadopoulos N, Nicoladesi NC, Wei YF, Ruben SM, Carte KC, Rosen CA, Haseltine WA, Fleishmann RD, Fraser CM, Adams MD, Venter JC, Hamilton SR, Petersen P, Watson GM, Lynch HT, Peltomaki P, Mecklin JP, de la Chapelle A, Kinzler KW, Vogelstein B (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629

    Article  PubMed  CAS  Google Scholar 

  17. Haugen AC, Goel A, Yamada K, Marra G, Nguyen TP, Nagasaka T, Kanazawa S, Koike J, Kikuchi Y, Zhong X, Arita M, Shibuya K, Oshimura M, Hemmi H, Boland CR, Koi M (2008) Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res 68:8465–8472. doi:10.1158/0008-5472.CAN-08-0002

    Article  PubMed  CAS  Google Scholar 

  18. Koi M, Umar A, Chauhan DP, Cherian SP, Carethers JM, Kunkel TA, Boland CR (1994) Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N’-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res 54:4308–4312

    PubMed  CAS  Google Scholar 

  19. Jacob S, Aguado M, Fallik D, Praz F (2001) The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res 61:6555–6562

    PubMed  CAS  Google Scholar 

  20. Marra G, Iaccarino I, Lettieri T, Roscilli G, Delmastro P, Jiricny J (1998) Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci USA 95:8568–8573

    Article  PubMed  CAS  Google Scholar 

  21. Tentori L, Leonetti C, Scarsella M, D’Amati G, Vergati M, Portarena I, Xu W, Kalish V, Zupi G, Zhang J, Graziani G (2003) Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res 9:5370–5379

    PubMed  CAS  Google Scholar 

  22. Yamane K, Taylor K, Kinsella TJ (2004) Mismatch repair-mediated G2/M arrest by 6-thioguanine involves the ATR-Chk1 pathway. Biochem Biophys Res Commun 318:297–302

    Article  PubMed  CAS  Google Scholar 

  23. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, Boulter R, Cranston A, O’Connor MJ, Martin NM, Borst P, Jonkers J (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105:17079–17084. doi:10.1073/pnas.0806092105

    Article  PubMed  CAS  Google Scholar 

  24. Zhu G, Chang P, Lippard SJ (2010) Recognition of platinum-DNA damage by poly(ADP-ribose) polymerase-1. Biochemistry 49:6177–6183. doi:10.1021/bi100775t

    Article  PubMed  CAS  Google Scholar 

  25. Vilar E, Bartnik CM, Stenzel SL, Raskin L, Ahn J, Moreno V, Mukherjee B, Iniesta MD, Morgan MA, Rennert G, Gruber SB (2011) MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res 71:2632–2642. doi:10.1158/0008-5472.CAN-10-1120

    Article  PubMed  CAS  Google Scholar 

  26. Oplustilova L, Wolanin K, Mistrik M, Korinkova G, Simkova D, Bouchal J, Lenobel R, Bartkova J, Lau A, O’Connor MJ, Lukas J, Bartek J (2012) Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle 11:3837–3850. doi:10.4161/cc.22026

    Article  PubMed  CAS  Google Scholar 

  27. Gottipati P, Vischioni B, Schultz N, Solomons J, Bryant HE, Djureinovic T, Issaeva N, Sleeth K, Sharma RA, Helleday T (2010) Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res 70:5389–5398. doi:10.1158/0008-5472.CAN-09-4716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Italian Ministry of Education and Research, “Programmi di ricerca scientifica di Rilevante Interesse Nazionale” (PRIN) project to LT. A.M. is recipient of a fellowship from “Regione Lazio-Filas”. The funders had no role in study design, data collection and analysis, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Graziani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

280_2013_2175_MOESM1_ESM.pptx

Fig. S1 Analysis of apoptosis and cell cycle in MLH1-deficient and MLH1-proficient HCT116 cells treated with oxaliplatin. Cells were exposed to 1.2 and 2.5 μM oxaliplatin (Oxa) and analysed by flow cytometry at 72 h after treatment. The percentages of apoptotic cells are indicated. The percentages of MLH1-deficient cells in the different phases of cell cycle are as follows: Ctr, G1 41%, S 42%, G2/M 17%; Oxa 1.2 μM, G1 56%, S 17%, G2/M 27%; Oxa 2.5 μM, G1 52%, S 13%, G2/M 35%. The percentages of MLH1-proficient cells in the different phases of cell cycle are as follows: untreated control (Ctr), G1 54%, S 29%, G2/M 17%; Oxa 1.2 μM, G1 56%, S 7%, G2/M 37%; Oxa 2.5 μM, G1 52%, S 6%, G2/M 42% (PPTX 307 kb)

280_2013_2175_MOESM2_ESM.pptx

Fig. S2 Cell cycle analysis of HCT116+3 and HCT116+3+5 cells treated with PARPi. HCT116+3 and HC116+3+5 cells were exposed to GPI 15427 (5 μM) and analysed by flow cytometry at 72 h after treatment. The percentages of cells in the different phases of cell cycle are as follows: HCT116+3, Ctr, G1 52%, S 32%, G2/M 16%; HCT116+3, PARPi, G1 53%, S 29%, G2/M 18%; HCT116+3+5, Ctr, G1 54%, S 24%, G2/M 22%; HCT116+3+5, PARPi, G1 52%, S 22%, G2/M 26% (PPTX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tentori, L., Muzi, A., Dorio, A.S. et al. MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination. Cancer Chemother Pharmacol 72, 117–125 (2013). https://doi.org/10.1007/s00280-013-2175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2175-0

Keywords

Navigation