Skip to main content

Advertisement

Log in

The anti-cancer activities of jasmonates

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Jasmonates, plant stress hormones protecting the plant from microbial pathogens and environmental stresses, were also discovered to have toxic activities toward mammalian cancer cells. Methyl jasmonate (MJ) was found to be the most active anti-cancer derivate among natural jasmonates, exhibiting a specific cell death-induction effect toward several cancer cells. Since that discovery of jasmonates-inducing cancer cell death, the molecular mechanism of action of jasmonates leading to cell death was deciphered. Moreover, in addition to the direct effects of MJ on cancer cell death, it was found to deregulate several genes and affect various intracellular factors and cellular processes, such as sensitization of apoptotic cell death induced by TRAIL, cancer cell migration attenuation, cell cycle arrest, and differentiation. This mini-review summarizes over a decade of research of jasmonates as anti-cancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589

    Article  CAS  Google Scholar 

  2. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  3. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697

    Article  CAS  PubMed  Google Scholar 

  4. Davies PJ (2004) Plant hormones-biosynthesis, signal transduction. Kluwer Academic Publishers, Action

    Google Scholar 

  5. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819

    CAS  PubMed  Google Scholar 

  6. Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol (Stuttg) 8(1):1–10

    Article  CAS  Google Scholar 

  7. Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70(13–14):1581–1588

    PubMed  Google Scholar 

  8. Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in arabidopsis. Ann Bot 92(3):329–337

    Article  CAS  PubMed  Google Scholar 

  9. Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H (2006) Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant Res 119(4):407–413

    Article  CAS  PubMed  Google Scholar 

  10. Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65(5):497–503

    Article  CAS  PubMed  Google Scholar 

  11. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87(19):7713–7716

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49(7):1092–1111

    Article  CAS  PubMed  Google Scholar 

  13. Flescher E (2007) Jasmonates in cancer therapy. Cancer Lett 245(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  14. Cohen S, Flescher E (2009) Methyl jasmonate: a plant stress hormone as an anti-cancer drug. Phytochemistry 70(13–14):1600–1609

    Article  CAS  PubMed  Google Scholar 

  15. Fingrut O, Flescher E (2002) Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 16(4):608–616

    Article  CAS  PubMed  Google Scholar 

  16. Flescher E (2005) Jasmonates–a new family of anti-cancer agents. Anticancer Drugs 16(9):911–916

    Article  CAS  PubMed  Google Scholar 

  17. Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E (2005) Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65(5):1984–1993

    Article  CAS  PubMed  Google Scholar 

  18. Fingrut O, Reischer D, Rotem R, Goldin N, Altboum I, Zan-Bar I, Flescher E (2005) Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells. Br J Pharmacol 146(6):800–808

    Article  CAS  PubMed  Google Scholar 

  19. Heyfets A, Flescher E (2007) Cooperative cytotoxicity of methyl jasmonate with anti-cancer drugs and 2-deoxy-d-glucose. Cancer Lett 250(2):300–310

    Article  CAS  PubMed  Google Scholar 

  20. Kim JH, Lee SY, Oh SY, Han SI, Park HG, Yoo MA, Kang HS (2004) Methyl jasmonate induces apoptosis through induction of Bax/Bcl-XS and activation of caspase-3 via ROS production in A549 cells. Oncol Rep 12(6):1233–1238

    CAS  PubMed  Google Scholar 

  21. Ezekwudo DE, Wang RC, Elegbede JA (2007) Methyl jasmonate induced apoptosis in human prostate carcinoma cells via 5-lipoxygenase dependent pathway. J Exp Ther Oncol 6(4):267–277

    CAS  PubMed  Google Scholar 

  22. Yeruva L, Pierre KJ, Carper SW, Elegbede JA, Toy BJ, Wang RC (2006) Jasmonates induce apoptosis and cell cycle arrest in non-small cell lung cancer lines. Exp Lung Res 32(10):499–516

    Article  CAS  PubMed  Google Scholar 

  23. Yeruva L, Elegbede JA, Carper SW (2008) Methyl jasmonate decreases membrane fluidity and induces apoptosis through tumor necrosis factor receptor 1 in breast cancer cells. Anticancer Drugs 19(8):766–776

    Article  CAS  PubMed  Google Scholar 

  24. Yeruva L, Pierre KJ, Bathina M, Elegbede A, Carper SW (2008) Delayed cytotoxic effects of methyl jasmonate and cis-jasmone induced apoptosis in prostate cancer cells. Cancer Invest 26(9):890–899

    Article  CAS  PubMed  Google Scholar 

  25. Tong QS, Jiang GS, Zheng LD, Tang ST, Cai JB, Liu Y, Zeng FQ, Dong JH (2008) Methyl jasmonate downregulates expression of proliferating cell nuclear antigen and induces apoptosis in human neuroblastoma cell lines. Anticancer Drugs 19(6):573–581

    Article  CAS  PubMed  Google Scholar 

  26. Tong QS, Jiang GS, Zheng LD, Tang ST, Cai JB, Liu Y, Zeng FQ, Dong JH (2008) Natural jasmonates of different structures suppress the growth of human neuroblastoma cell line SH-SY5Y and its mechanisms. Acta Pharmacol Sin 29(7):861–869

    Article  CAS  PubMed  Google Scholar 

  27. Ezekwudo D, Shashidharamurthy R, Devineni D, Bozeman E, Palaniappan R, Selvaraj P (2008) Inhibition of expression of anti-apoptotic protein Bcl-2 and induction of cell death in radioresistant human prostate adenocarcinoma cell line (PC-3) by methyl jasmonate. Cancer Lett 270(2):277–285

    Article  CAS  PubMed  Google Scholar 

  28. Kniazhanski T, Jackman A, Heyfets A, Gonen P, Flescher E, Sherman L (2008) Methyl jasmonate induces cell death with mixed characteristics of apoptosis and necrosis in cervical cancer cells. Cancer Lett 271(1):34–46

    Article  CAS  PubMed  Google Scholar 

  29. Milrot E, Jackman A, Kniazhanski T, Gonen P, Flescher E, Sherman L (2012) Methyl jasmonate reduces the survival of cervical cancer cells and downregulates HPV E6 and E7, and survivin. Cancer Lett 319(1):31–38

    Article  CAS  PubMed  Google Scholar 

  30. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490

    Article  CAS  PubMed  Google Scholar 

  31. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24(2):68–72

    Article  CAS  PubMed  Google Scholar 

  32. Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Article  CAS  PubMed  Google Scholar 

  33. Kroemer G (2006) Mitochondria in cancer. Oncogene 25(34):4630–4632

    Article  CAS  PubMed  Google Scholar 

  34. Pedersen PL (2007) The cancer cell’s “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr 39(1):1–12

    Article  CAS  PubMed  Google Scholar 

  35. Gogvadze V, Zhivotovsky B, Orrenius S (2009) The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med 31(1):60–74

    Article  PubMed  Google Scholar 

  36. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  37. Debatin KM, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21(57):8786–8803

    Article  CAS  PubMed  Google Scholar 

  38. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55(3):178–194

    Article  PubMed  Google Scholar 

  39. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555(1–3):14–20

    CAS  PubMed  Google Scholar 

  40. Nakashima RA, Mangan PS, Colombini M, Pedersen PL (1986) Hexokinase receptor complex in hepatoma mitochondria: evidence from N, N’-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry 25(5):1015–1021

    Article  CAS  PubMed  Google Scholar 

  41. Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74(9):3735–3739

    Article  CAS  PubMed  Google Scholar 

  42. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786

    Article  CAS  PubMed  Google Scholar 

  43. Pedersen PL (2007) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(3):211–222

    Article  CAS  PubMed  Google Scholar 

  44. Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27(34):4636–4643

    Article  CAS  PubMed  Google Scholar 

  45. Galluzzi L, Kepp O, Tajeddine N, Kroemer G (2008) Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene 27(34):4633–4635

    Article  CAS  PubMed  Google Scholar 

  46. Elia U, Flescher E (2008) PI3 K/Akt pathway activation attenuates the cytotoxic effect of methyl jasmonate toward sarcoma cells. Neoplasia 10(11):1303–1313

    CAS  PubMed  Google Scholar 

  47. Yuan TL, Cantley LC (2008) PI3 K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510

    Article  CAS  PubMed  Google Scholar 

  48. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  CAS  PubMed  Google Scholar 

  49. West KA, Castillo SS, Dennis PA (2002) Activation of the PI3 K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5(6):234–248

    Article  CAS  PubMed  Google Scholar 

  50. Falasca M (2010) PI3 K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des 16(12):1410–1416

    Article  CAS  PubMed  Google Scholar 

  51. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23(20):7315–7328

    Article  CAS  PubMed  Google Scholar 

  52. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418

    Article  CAS  PubMed  Google Scholar 

  53. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–830

    Article  CAS  PubMed  Google Scholar 

  54. Majewski N, Nogueira V, Robey RB, Hay N (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24(2):730–740

    Article  CAS  PubMed  Google Scholar 

  55. Oh SY, Kim JH, Park MJ, Kim SM, Yoon CS, Joo YM, Park JS, Han SI, Park HG, Kang HS (2005) Induction of heat shock protein 72 in C6 glioma cells by methyl jasmonate through ROS-dependent heat shock factor 1 activation. Int J Mol Med 16(5):833–839

    CAS  PubMed  Google Scholar 

  56. Davies NJ, Hayden RE, Simpson PJ, Birtwistle J, Mayer K, Ride JP, Bunce CM (2009) AKR1C isoforms represent a novel cellular target for jasmonates alongside their mitochondrial-mediated effects. Cancer Res 69(11):4769–4775

    Article  CAS  PubMed  Google Scholar 

  57. Penning TM, Byrns MC (2009) Steroid hormone transforming aldo-keto reductases and cancer. Ann N Y Acad Sci 1155:33–42

    Article  CAS  PubMed  Google Scholar 

  58. Matsuura K, Shiraishi H, Hara A, Sato K, Deyashiki Y, Ninomiya M, Sakai S (1998) Identification of a principal mRNA species for human 3alpha-hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. J Biochem 124(5):940–946

    Article  CAS  PubMed  Google Scholar 

  59. Lan Q, Mumford JL, Shen M, Demarini DM, Bonner MR, He X, Yeager M, Welch R, Chanock S, Tian L, Chapman RS, Zheng T, Keohavong P, Caporaso N, Rothman N (2004) Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis 25(11):2177–2181

    Article  CAS  PubMed  Google Scholar 

  60. Frei E, BasJr RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Gansler TS (2003) Principles of Dose, Schedule, and Combination Chemotherapy. Cancer Medicine. Cancer Medicine, BC Decker, pp 817–837

    Google Scholar 

  61. Takimoto C, Coia LR, Hoskins WJ, Wagman LD (2005) Principles of Oncologic Pharmacotherapy. A Multidisciplinary Approach. CMP Healthcare Media, Manhasset, Cancer Management, pp 23–42

    Google Scholar 

  62. Cai S, Xu Y, Cooper RJ, Ferkowicz MJ, Hartwell JR, Pollok KE, Kelley MR (2005) Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents. Cancer Res 65(8):3319–3327

    CAS  PubMed  Google Scholar 

  63. Yeruva L, Hall C, Elegbede JA, Carper SW (2010) Perillyl alcohol and methyl jasmonate sensitize cancer cells to cisplatin. Anticancer Drugs 21(1):1–9

    Article  CAS  PubMed  Google Scholar 

  64. Raviv Z, Zilberberg A, Cohen S, Reischer-Pelech D, Horrix C, Berger MR, Rosin-Arbesfeld R, Flescher E (2011) Methyl jasmonate down-regulates survivin expression and sensitizes colon carcinoma cells towards TRAIL-induced cytotoxicity. Br J Pharmacol 164(5):1433–1444

    Article  CAS  PubMed  Google Scholar 

  65. Zhao J, Kang S, Zhang X, You S, Park JS, Jung JH, Kim DK (2010) Apoptotic activity of a new jasmonate analogue is associated with its induction of DNA damage. Oncol Rep 24(3):771–777

    CAS  PubMed  Google Scholar 

  66. Park C, Jin CY, Kim GY, Cheong J, Jung JH, Yoo YH, Choi YH (2010) A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro. Toxicol In Vitro 24(7):1920–1926

    Article  CAS  PubMed  Google Scholar 

  67. Park C, Jin CY, Hwang HJ, Kim GY, Jung JH, Kim WJ, Yoo YH, Choi YH (2012) J7, a methyl jasmonate derivative, enhances TRAIL-mediated apoptosis through up-regulation of reactive oxygen species generation in human hepatoma HepG2 cells. Toxicol In Vitro 26(1):86–93

    Article  CAS  PubMed  Google Scholar 

  68. Van Geelen CM, de Vries EG, de Jong S (2004) Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updat 7(6):345–358

    Article  PubMed  Google Scholar 

  69. Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL–potential and risks of a novel anticancer therapy. J Mol Med 85(9):923–935

    Article  CAS  PubMed  Google Scholar 

  70. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798

    Article  CAS  PubMed  Google Scholar 

  71. Jiang G, Zhao J, Xiao X, Tao D, Gu C, Tong Q, Luo B, Wang L, Zeng F (2011) AN N-terminal Smac peptide sensitizes human prostate carcinoma cells to methyl jasmonate-induced apoptosis. Cancer Lett 302(1):37–46

    Article  CAS  PubMed  Google Scholar 

  72. Xiao XY, Jiang GS, Wang L, Lv L, Zeng FQ (2011) Predominant enhancement of apoptosis induced by methyl jasmonate in bladder cancer cells: therapeutic effect of the Antp-conjugated Smac peptide. Anticancer Drugs 22(9):853–863

    Article  CAS  PubMed  Google Scholar 

  73. Milrot E, Jackman A, Flescher E, Gonen P, Kelson I, Keisari Y, Sherman L (2012) Enhanced killing of cervical cancer cells by combinations of methyl jasmonate with cisplatin, X or alpha radiation. Invest New Drugs

  74. Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481

    Article  PubMed  Google Scholar 

  75. Vermeulen K, Berneman ZN, Van Bockstaele DR (2003) Cell cycle and apoptosis. Cell Prolif 36(3):165–175

    Article  CAS  PubMed  Google Scholar 

  76. Ishii Y, Kiyota H, Sakai S, Honma Y (2004) Induction of differentiation of human myeloid leukemia cells by jasmonates, plant hormones. Leukemia 18(8):1413–1419

    Article  CAS  PubMed  Google Scholar 

  77. Tsumura H, Akimoto M, Kiyota H, Ishii Y, Ishikura H, Honma Y (2008) Gene expression profiles in differentiating leukemia cells induced by methyl jasmonate are similar to those of cytokinins and methyl jasmonate analogs induce the differentiation of human leukemia cells in primary culture. Leukemia 23(4):753–760

    Article  PubMed  Google Scholar 

  78. Reischer D, Heyfets A, Shimony S, Nordenberg J, Kashman Y, Flescher E (2007) Effects of natural and novel synthetic jasmonates in experimental metastatic melanoma. Br J Pharmacol 150(6):738–749

    Article  CAS  PubMed  Google Scholar 

  79. Dang HT, Lee HJ, Yoo ES, Shinde PB, Lee YM, Hong J, Kim DK, Jung JH (2008) Anti-inflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J Nat Prod 71(2):232–240

    Article  CAS  PubMed  Google Scholar 

  80. Dang HT, Lee HJ, Yoo ES, Hong J, Bao B, Choi JS, Jung JH (2008) New jasmonate analogues as potential anti-inflammatory agents. Bioorg Med Chem 16(24):10228–10235

    Article  CAS  PubMed  Google Scholar 

  81. Lee HJ, Maeng K, Dang HT, Kang GJ, Ryou C, Jung JH, Kang HK, Prchal JT, Yoo ES, Yoon D (2011) Anti-inflammatory effect of methyl dehydrojasmonate (J2) is mediated by the NF-kappaB pathway. J Mol Med (Berl) 89(1):83–90

    Article  CAS  Google Scholar 

  82. Pereira Lopes JE, Barbosa MR, Stella CN, Santos WA, Pereira EM, Nogueira-Neto J, Augusto EM, Silva LV, Smaili SS, Gomes LF (2010) In vivo anti-angiogenic effects further support the promise of the antineoplasic activity of methyl jasmonate. Braz J Biol 70(2):443–449

    Article  CAS  PubMed  Google Scholar 

  83. Palmieri B, Iannitti T, Capone S, Flescher E (2011) A preliminary study of the local treatment of preneoplastic and malignant skin lesions using methyl jasmonate. Eur Rev Med Pharmacol Sci 15(3):333–336

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review is dedicated to the memorial and honor of the late Professor Eliezer Flescher, who was the pioneer scientist on the subject of jasmonates in cancer therapy. This work was supported in part by a grant from the Cooperation Program in Cancer Research of the Deutsches Krebsforschunszentrum (DKFZ) and by the Israel Cancer Association to E. Flescher.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziv Raviv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raviv, Z., Cohen, S. & Reischer-Pelech, D. The anti-cancer activities of jasmonates. Cancer Chemother Pharmacol 71, 275–285 (2013). https://doi.org/10.1007/s00280-012-2039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-2039-z

Keywords

Navigation