Skip to main content
Log in

AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Neuroblastoma is a common pediatric tumor characterized by clinical heterogeneity. Because it is derived from sympathetic neuroblasts, the NTRK family of neurotrophin receptors plays an integral role in neuroblastoma cell survival, growth, and differentiation. Indeed, high expression of NTRK1 is associated with favorable clinical features and outcome, whereas expression of NTRK2 and its ligand, brain-derived neurotrophic factor (BDNF), are associated with unfavorable features and outcome. AZ64 (Astra Zeneca) is a potent and selective inhibitor of the NTRK tyrosine kinases that blocks phosphorylation at nanomolar concentrations. To determine the preclinical activity of AZ64, we performed intervention trials in a xenograft model with NTRK2-overexpressing neuroblastomas. AZ64 alone significantly inhibited tumor growth compared to vehicle-treated animals (p = 0.0006 for tumor size). Furthermore, the combination of AZ64 with conventional chemotherapeutic agents, irinotecan and temozolomide (irino–temo), showed significantly enhanced anti-tumor efficacy compared to irino–temo alone [(p < 0.0001 for tumor size, p < 0.0005 for event-free survival (EFS)]. We also assessed the combination of AZ64 and local radiation therapy (RT) on a neuroblastoma hindlimb xenograft model, and the efficacy of local RT was significantly increased when animals were treated simultaneously with AZ64 (p < 0.0001 for tumor size, p = 0.0006 for EFS). We conclude that AZ64 can inhibit growth of NTRK-expressing neuroblastomas both in vitro and in vivo. More importantly, it can significantly enhance the efficacy of conventional chemotherapy as well as local RT, presumably by inhibition of the NTRK2/BDNF autocrine survival pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. [see comments]. Nature 374:450–453

    Article  PubMed  CAS  Google Scholar 

  2. Barbacid M (1995) Neurotrophic factors and their receptors. Curr Opin Cell Biol 7:148–155

    Article  PubMed  CAS  Google Scholar 

  3. Barbacid M (1995) Structural and functional properties of the TRK family of neurotrophin receptors. Ann N Y Acad Sci 766:442–458

    Article  PubMed  CAS  Google Scholar 

  4. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216

    Article  PubMed  CAS  Google Scholar 

  5. Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15:3244–3250

    Article  PubMed  CAS  Google Scholar 

  6. Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG, Lee CP, Evans AE (1997) Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 31(1–2):49–55

    Google Scholar 

  7. Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA (1995) A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 28:15–24

    Article  PubMed  CAS  Google Scholar 

  8. Davidson B, Reich R, Lazarovici P, Ann Florenes V, Nielsen S, Nesland JM (2004) Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat 83:119–128

    Article  PubMed  CAS  Google Scholar 

  9. Delvincourt C, Patey M, Flament JB, Suarez HG, Larbre H, Jardillier JC, Delisle MJ (1996) Ret and trk proto-oncogene activation in thyroid papillary carcinomas in French patients from the Champagne-Ardenne region. Clin Biochem 29:267–271

    Article  PubMed  CAS  Google Scholar 

  10. Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP (2001) Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res 61:4337–4340

    PubMed  CAS  Google Scholar 

  11. Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H (2001) Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276:17864–17870

    Article  PubMed  CAS  Google Scholar 

  12. Dolle L, Adriaenssens E, El Yazidi-Belkoura I, Le Bourhis X, Nurcombe V, Hondermarck H (2004) Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets 4:463–470

    Article  PubMed  CAS  Google Scholar 

  13. Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H (2003) Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22:5592–5601

    Article  PubMed  CAS  Google Scholar 

  14. Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, Brodeur GM (2002) Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res 62:1802–1808

    PubMed  CAS  Google Scholar 

  15. Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM, Evans AE (2001) Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 19:689–696

    PubMed  CAS  Google Scholar 

  16. Euhus DM, Timmons CF, Tomlinson GE (2002) ETV6-NTRK3–Trk-ing the primary event in human secretory breast cancer. Cancer Cell 2:347–348

    Article  PubMed  CAS  Google Scholar 

  17. Evans AE, Kisselbach KD, Liu X, Eggert A, Ikegaki N, Camoratto AM, Dionne C, Brodeur GM (2001) Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Med Pediatr Oncol 36:181–184

    Article  PubMed  CAS  Google Scholar 

  18. Evans AE, Kisselbach KD, Yamashiro DJ, Ikegaki N, Camoratto AM, Dionne CA, Brodeur GM (1999) Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin Cancer Res 5:3594–3602

    PubMed  CAS  Google Scholar 

  19. George DJ, Dionne CA, Jani J, Angeles T, Murakata C, Lamb J, Isaacs JT (1999) Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res 59:2395–2401

    PubMed  CAS  Google Scholar 

  20. George DJ, Suzuki H, Bova GS, Isaacs JT (1998) Mutational analysis of the TrkA gene in prostate cancer. Prostate 36:172–180

    Article  PubMed  CAS  Google Scholar 

  21. George RE, Li S, Medeiros-Nancarrow C, Neuberg D, Marcus K, Shamberger RC, Pulsipher M, Grupp SA, Diller L (2006) High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol 24:2891–2896

    Article  PubMed  Google Scholar 

  22. Greco A, Mariani C, Miranda C, Lupas A, Pagliardini S, Pomati M, Pierotti MA (1995) The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 15:6118–6127

    PubMed  CAS  Google Scholar 

  23. Greco A, Mariani C, Miranda C, Pagliardini S, Pierotti MA (1993) Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics 18:397–400

    Article  PubMed  CAS  Google Scholar 

  24. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19:112–123

    Article  PubMed  CAS  Google Scholar 

  25. Grotzer MA, Janss AJ, Fung K, Biegel JA, Sutton LN, Rorke LB, Zhao H, Cnaan A, Phillips PC, Lee VM, Trojanowski JQ (2000) TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18:1027–1035

    PubMed  CAS  Google Scholar 

  26. Grotzer MA, Janss AJ, Phillips PC, Trojanowski JQ (2000) Neurotrophin receptor TrkC predicts good clinical outcome in medulloblastoma and other primitive neuroectodermal brain tumors. Klin Padiatr 212:196–199

    Article  PubMed  CAS  Google Scholar 

  27. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, Camoratto AM, Evans AE, Brodeur GM (2002) Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62:6462–6466

    PubMed  CAS  Google Scholar 

  28. Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H, Balamuth N, Maris JM, Brodeur GM (2010) Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 16:1478–1485

    Article  PubMed  CAS  Google Scholar 

  29. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62:6756–6763

    PubMed  CAS  Google Scholar 

  30. Kaplan DR, Miller FD (1997) Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9:213–221

    Article  PubMed  CAS  Google Scholar 

  31. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  PubMed  CAS  Google Scholar 

  32. Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 58:5046–5048

    PubMed  CAS  Google Scholar 

  33. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18:184–187

    Article  PubMed  CAS  Google Scholar 

  34. Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H (1993) Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53:2044–2050

    PubMed  CAS  Google Scholar 

  35. Liu Q, Schwaller J, Kutok J, Cain D, Aster JC, Williams IR, Gilliland DG (2000) Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J 19:1827–1838

    Article  PubMed  CAS  Google Scholar 

  36. Lucarelli E, Kaplan D, Thiele CJ (1997) Activation of trk-A but not trk-B signal transduction pathway inhibits growth of neuroblastoma cells. Eur J Cancer 33:2068–2070

    Article  PubMed  CAS  Google Scholar 

  37. MacGrogan D, Saint-Andre JP, Dicou E (1992) Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J Neurochem 59:1381–1391

    Article  PubMed  CAS  Google Scholar 

  38. Makretsov N, He M, Hayes M, Chia S, Horsman DE, Sorensen PH, Huntsman DG (2004) A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosomes Cancer 40:152–157

    Article  PubMed  CAS  Google Scholar 

  39. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  PubMed  CAS  Google Scholar 

  40. Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55:1798–1806

    PubMed  CAS  Google Scholar 

  41. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med 341:1165–1173

    Article  PubMed  CAS  Google Scholar 

  42. McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD (1999) Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96:4540–4545

    Article  PubMed  CAS  Google Scholar 

  43. Middlemas DS, Kihl BK, Moody NM (1999) Brain derived neurotrophic factor protects human neuroblastoma cells from DNA damaging agents. J Neurooncol 45:27–36

    Article  PubMed  CAS  Google Scholar 

  44. Miknyoczki SJ, Chang H, Klein-Szanto A, Dionne CA, Ruggeri BA (1999) The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 5:2205–2212

    PubMed  CAS  Google Scholar 

  45. Miknyoczki SJ, Dionne CA, Klein-Szanto AJ, Ruggeri BA (1999) The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Ann N Y Acad Sci 880:252–262

    Article  PubMed  CAS  Google Scholar 

  46. Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S, Groshen S, Hellriegel ET, Bensen-Kennedy D, Matthay KK, Brodeur GM, Maris JM (2011) Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol 68(4):1057–1065

    Google Scholar 

  47. Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM (1992) Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 52:1364–1368

    PubMed  CAS  Google Scholar 

  48. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328:847–854

    Article  PubMed  CAS  Google Scholar 

  49. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14:759–767

    PubMed  CAS  Google Scholar 

  50. Nakagawara A, Brodeur GM (1997) Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer 33:2050–2053

    Article  PubMed  CAS  Google Scholar 

  51. Norris RE, Minturn JE, Brodeur GM, Maris JM, Adamson PC (2011) Preclinical evaluation of lestaurtinib (CEP-701) in combination with retinoids for neuroblastoma. Cancer Chemother Pharmacol 68(6):1469–1475

    Article  PubMed  CAS  Google Scholar 

  52. Pflug BR, Dionne C, Kaplan DR, Lynch J, Djakiew D (1995) Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136:262–268

    Article  PubMed  CAS  Google Scholar 

  53. Pierotti MA, Bongarzone I, Borrello MG, Mariani C, Miranda C, Sozzi G, Greco A (1995) Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 18:130–133

    PubMed  CAS  Google Scholar 

  54. Pierotti MA, Greco A (2006) Oncogenic rearrangements of the NTRK1/NGF receptor. Cancer Lett 232:90–98

    Article  PubMed  CAS  Google Scholar 

  55. Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, Perez-Atayde AR, Fletcher JA (1998) Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153:1451–1458

    Article  PubMed  CAS  Google Scholar 

  56. Ryden M, Sehgal R, Dominici C, Schilling FH, Ibanez CF, Kogner P (1996) Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. Br J Cancer 74:773–779

    Article  PubMed  CAS  Google Scholar 

  57. Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Nat Acad Sci USA 91:12867–12871

    Article  PubMed  CAS  Google Scholar 

  58. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K, Murphy KM, Dauses T, Allebach J, Small D (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103:3669–3676

    Article  PubMed  CAS  Google Scholar 

  59. Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC (1993) Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85:377–384

    Article  PubMed  CAS  Google Scholar 

  60. Tacconelli A, Farina AR, Cappabianca L, Desantis G, Tessitore A, Vetuschi A, Sferra R, Rucci N, Argenti B, Screpanti I, Gulino A, Mackay AR (2004) TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 6:347–360

    Article  PubMed  CAS  Google Scholar 

  61. Thress K, Macintyre T, Wang H, Whitston D, Liu ZY, Hoffmann E, Wang T, Brown JL, Webster K, Omer C, Zage PE, Zeng L, Zweidler-McKay PA (2009) Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol Cancer Ther 8:1818–1827

    Article  PubMed  CAS  Google Scholar 

  62. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PH (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–376

    Article  PubMed  CAS  Google Scholar 

  63. Walch ET, Marchetti D (1999) Role of neurotrophins and neurotrophins receptors in the in vitro invasion and heparanase production of human prostate cancer cells. Clin Exp Metastasis 17:307–314

    Article  PubMed  CAS  Google Scholar 

  64. Yamashiro DJ, Nakagawara A, Ikegaki N, Liu XG, Brodeur GM (1996) Expression of TrkC in favorable human neuroblastomas. Oncogene 12:37–41

    PubMed  CAS  Google Scholar 

  65. Yilmaz T, Jiffar T, de la Garza G, Lin H, Milas Z, Takahashi Y, Hanna E, MacIntyre T, Brown JL, Myers JN, Kupferman ME (2010) Theraputic targeting of Trk suppresses tumor proliferation and enhances cisplatin activity in HNSCC. Cancer Biol Ther 10:644–653

    Article  PubMed  CAS  Google Scholar 

  66. Zage PE, Graham TC, Zeng L, Fang W, Pien C, Thress K, Omer C, Brown JL, Zweidler-McKay PA (2011) The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan. Cancer 117:1321–1391

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the NIH (CA-094194, CA-097323; GMB), the Richard and Nancy Wolfson Young Investigator Fund (JEM), the St. Baldrick’s Foundation (CRV), and the Audrey E. Evans Endowed Chair in Molecular Oncology (GMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett M. Brodeur.

Additional information

Radhika Iyer and Carly R. Varela contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyer, R., Varela, C.R., Minturn, J.E. et al. AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol 70, 477–486 (2012). https://doi.org/10.1007/s00280-012-1879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1879-x

Keywords

Navigation