Skip to main content

Advertisement

Log in

Decitabine triphosphate levels in peripheral blood mononuclear cells from patients receiving prolonged low-dose decitabine administration: a pilot study

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Decitabine is a nucleoside analog used in the treatment for myelodysplastic syndrome. The compound requires intracellular conversion to its triphosphate to become active. Decitabine triphosphate has, however, never been quantified in peripheral blood mononuclear cells (PBMCs) from patients.

Method

This article describes a method for the quantitative determination of decitabine triphosphate in PBMCs using liquid chromatography coupled to tandem mass spectrometry. The method was applied to ex vivo incubated whole blood samples and samples from three patients receiving prolonged low-dose decitabine treatment.

Results

We successfully quantitated decitabine triphosphate in PBMCs. Considerable levels were detected in PBMCs from two patients that responded well to therapy, whereas only low levels were present in a non-responding patient. Moreover, the data show that, in contrast to plasma decitabine, intracellular decitabine triphosphate accumulates during a treatment cycle of nine infusions at a dose of 15 mg/m2.

Conclusions

The results suggest a relationship between decitabine triphosphate levels and response to therapy. Based on the observed accumulation of decitabine triphosphate during a treatment cycle, a less intensive dose scheme could be feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aparicio A, Eads CA, Leong LA, Laird PW, Newman EM, Synold TW et al (2003) Phase I trial of continuous infusion 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol 51:231–239

    PubMed  CAS  Google Scholar 

  2. Beausejour CM, Gagnon J, Primeau M, Momparler RL (2002) Cytotoxic activity of 2′,2′-difluorodeoxycytidine, 5-aza-2′-deoxycytidine and cytosine arabinoside in cells transduced with deoxycytidine kinase gene. Biochem Biophys Res Commun 293:1478–1484

    Article  PubMed  Google Scholar 

  3. Cashen AF, Shah AK, Todt L, Fisher N, DiPersio J (2008) Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Cancer Chemother Pharmacol 61:759–766

    Article  PubMed  CAS  Google Scholar 

  4. Chabot GG, Bouchard J, Momparler RL (1983) Kinetics of deamination of 5-aza-2′-deoxycytidine and cytosine arabinoside by human liver cytidine deaminase and its inhibition by 3-deazauridine, thymidine or uracil arabinoside. Biochem Pharmacol 32:1327–1328

    Article  PubMed  CAS  Google Scholar 

  5. Cihak A (1978) Transformation of 5-aza-2′-deoxycytidine-3H and its incorporation in different systems of rapidly proliferating cells. Eur J Cancer 14:117–124

    Article  PubMed  CAS  Google Scholar 

  6. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P et al (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964

    Article  PubMed  CAS  Google Scholar 

  7. Eliopoulos N, Cournoyer D, Momparler RL (1998) Drug resistance to 5-aza-2′-deoxycytidine, 2′,2′-difluorodeoxycytidine, and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol 42:373–378

    Article  PubMed  CAS  Google Scholar 

  8. Gandhi V, Xu YZ, Estey E (1998) Accumulation of arabinosyluracil 5′-triphosphate during arabinosylcytosine therapy in circulating blasts of patients with acute myelogenous leukemia. Clin Cancer Res 4:1719–1726

    PubMed  CAS  Google Scholar 

  9. Grant S, Rauscher F III, Margolin J, Cadman E (1982) Dose- and schedule-dependent activation and drug synergism between thymidine and 5-aza-2′-deoxycytidine in a human promyelocytic leukemia cell line. Cancer Res 42:519–524

    PubMed  CAS  Google Scholar 

  10. Grunewald R, Kantarjian H, Keating MJ, Abbruzzese JL, Tarassoff P, Plunkett W (1990) Pharmacologically directed design of the dose rate and schedule of 2′,2′-difluorodeoxycytidine (Gemcitabine) administration in leukemia. Cancer Res 50:6823–6826

    PubMed  CAS  Google Scholar 

  11. Hackanson B, Robbel C, Wijermans P, Lubbert M (2005) In vivo effects of decitabine in myelodysplasia and acute myeloid leukemia: review of cytogenetic and molecular studies. Ann Hematol 84(Suppl 1):32–38

    Article  PubMed  CAS  Google Scholar 

  12. Issa JP (2007) DNA methylation as a therapeutic target in cancer. Clin Cancer Res 13:1634–1637

    Article  PubMed  CAS  Google Scholar 

  13. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S et al (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640

    Article  PubMed  CAS  Google Scholar 

  14. Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H (2008) Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer 112:2341–2351

    Article  PubMed  CAS  Google Scholar 

  15. Jansen RS, Rosing H, de Wolf CJ, Beijnen JH (2007) Development and validation of an assay for the quantitative determination of cladribine nucleotides in MDCKII cells and culture medium using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom 21:4049–4059

    Article  PubMed  CAS  Google Scholar 

  16. Jansen RS, Rosing H, Schellens JH, Beijnen JH (2009) Retention studies of 2′-2′-difluorodeoxycytidine and 2′-2′-difluorodeoxyuridine nucleosides and nucleotides on porous graphitic carbon: development of a liquid chromatography-tandem mass spectrometry method. J Chromatogr A 1216:3168–3174

    Article  PubMed  CAS  Google Scholar 

  17. Jansen RS, Rosing H, Schellens JH, Beijnen JH (2011) Mass spectrometry in the quantitative analysis of therapeutic intracellular nucleotide analogs. Mass Spectrom Rev 30:321–343

    Article  PubMed  CAS  Google Scholar 

  18. Jordheim L, Galmarini CM, Dumontet C (2003) Drug resistance to cytotoxic nucleoside analogues. Curr Drug Targets 4:443–460

    Article  PubMed  CAS  Google Scholar 

  19. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    Article  PubMed  CAS  Google Scholar 

  20. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, Cortes J et al (2007) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109:52–57

    Article  PubMed  CAS  Google Scholar 

  21. Kantarjian HM, Issa JP (2005) Decitabine dosing schedules. Semin Hematol 42:S17–S22

    Article  PubMed  CAS  Google Scholar 

  22. Laliberte J, Marquez VE, Momparler RL (1992) Potent inhibitors for the deamination of cytosine arabinoside and 5-aza-2′-deoxycytidine by human cytidine deaminase. Cancer Chemother Pharmacol 30:7–11

    Article  PubMed  CAS  Google Scholar 

  23. Lemaire M, Chabot GG, Raynal NJ, Momparler LF, Hurtubise A, Bernstein ML et al (2008) Importance of dose-schedule of 5-aza-2′-deoxycytidine for epigenetic therapy of cancer. BMC Cancer 8:128

    Article  PubMed  Google Scholar 

  24. Lemaire M, Momparler LF, Raynal NJ, Bernstein ML, Momparler RL (2009) Inhibition of cytidine deaminase by zebularine enhances the antineoplastic action of 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol 63:411–416

    Article  PubMed  CAS  Google Scholar 

  25. Lin KT, Momparler RL, Rivard GE (1981) High-performance liquid chromatographic analysis of chemical stability of 5-aza-2′-deoxycytidine. J Pharm Sci 70:1228–1232

    Article  PubMed  CAS  Google Scholar 

  26. Liu Z, Marcucci G, Byrd JC, Grever M, Xiao J, Chan KK (2006) Characterization of decomposition products and preclinical and low dose clinical pharmacokinetics of decitabine (5-aza-2′-deoxycytidine) by a new liquid chromatography/tandem mass spectrometry quantification method. Rapid Commun Mass Spectrom 20:1117–1126

    Article  PubMed  CAS  Google Scholar 

  27. Momparler RL (2005) Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin Hematol 42:S9–S16

    Article  PubMed  CAS  Google Scholar 

  28. Momparler RL (1985) Molecular, cellular and animal pharmacology of 5-aza-2′-deoxycytidine. Pharmacol Ther 30:287–299

    Article  PubMed  CAS  Google Scholar 

  29. Momparler RL, Bouffard DY, Momparler LF, Dionne J, Belanger K, Ayoub J (1997) Pilot phase I-II study on 5-aza-2′-deoxycytidine (Decitabine) in patients with metastatic lung cancer. Anticancer Drugs 8:358–368

    Article  PubMed  CAS  Google Scholar 

  30. Momparler RL, Chu MY, Fischer GA (1968) Studies on a new mechanism of resistance of L5178Y murine leukemia cells to cytosine arabinoside. Biochim Biophys Acta 161:481–493

    PubMed  CAS  Google Scholar 

  31. Momparler RL, Cote S, Eliopoulos N (1997) Pharmacological approach for optimization of the dose schedule of 5-Aza-2′-deoxycytidine (Decitabine) for the therapy of leukemia. Leukemia 11:175–180

    Article  PubMed  CAS  Google Scholar 

  32. Momparler RL, Momparler LF (1989) Chemotherapy of L1210 and L1210/ARA-C leukemia with 5-aza-2′-deoxycytidine and 3-deazauridine. Cancer Chemother Pharmacol 25:51–54

    Article  PubMed  CAS  Google Scholar 

  33. Momparler RL, Rivard GE, Gyger M (1985) Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol Ther 30:277–286

    Article  PubMed  CAS  Google Scholar 

  34. Momparler RL, Rossi M, Bouchard J, Bartolucci S, Momparler LF, Raia CA et al (1986) 5-AZA-2′-deoxycytidine synergistic action with thymidine on leukemic cells and interaction of 5-AZA-dCMP with dCMP deaminase. Adv Exp Med Biol 195(Pt B):157–163

    Google Scholar 

  35. Momparler RL, Rossi M, Bouchard J, Vaccaro C, Momparler LF, Bartolucci S (1984) Kinetic interaction of 5-AZA-2′-deoxycytidine-5′-monophosphate and its 5′-triphosphate with deoxycytidylate deaminase. Mol Pharmacol 25:436–440

    PubMed  CAS  Google Scholar 

  36. Oki Y, Aoki E, Issa JP (2007) Decitabine–bedside to bench. Crit Rev Oncol Hematol 61:140–152

    Article  PubMed  Google Scholar 

  37. Oki Y, Jelinek J, Shen L, Kantarjian HM, Issa JP (2008) Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. Blood 111:2382–2384

    Article  PubMed  CAS  Google Scholar 

  38. Patel K, Guichard SM, Jodrell DI (2008) Simultaneous determination of decitabine and vorinostat (Suberoylanalide hydroxamic acid, SAHA) by liquid chromatography tandem mass spectrometry for clinical studies. J Chromatogr B Anal Technol Biomed Life Sci 863:19–25

    Article  CAS  Google Scholar 

  39. Qin T, Castoro R, El Ahdab S, Jelinek J, Wang X, Si J et al (2011) Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One 6:e23372

    Article  PubMed  CAS  Google Scholar 

  40. Qin T, Jelinek J, Si J, Shu J, Issa JP (2009) Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 113:659–667

    Article  PubMed  CAS  Google Scholar 

  41. Qin T, Youssef EM, Jelinek J, Chen R, Yang AS, Garcia-Manero G et al (2007) Effect of cytarabine and decitabine in combination in human leukemic cell lines. Clin Cancer Res 13:4225–4232

    Article  PubMed  CAS  Google Scholar 

  42. Rivard GE, Momparler RL, Demers J, Benoit P, Raymond R, Lin K et al (1981) Phase I study on 5-aza-2′-deoxycytidine in children with acute leukemia. Leuk Res 5:453–462

    Article  PubMed  CAS  Google Scholar 

  43. Ruter B, Wijermans PW, Lubbert M (2006) Superiority of prolonged low-dose azanucleoside administration? Results of 5-aza-2′-deoxycytidine retreatment in high-risk myelodysplasia patients. Cancer 106:1744–1750

    Article  PubMed  Google Scholar 

  44. Steensma DP, Baer MR, Slack JL, Buckstein R, Godley LA, Garcia-Manero G et al (2009) Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol 27:3842–3848

    Article  PubMed  CAS  Google Scholar 

  45. Stegmann AP, Honders MW, Hagemeijer A, Hoebee B, Willemze R, Landegent JE (1995) In vitro-induced resistance to the deoxycytidine analogues cytarabine (AraC) and 5-aza-2′-deoxycytidine (DAC) in a rat model for acute myeloid leukemia is mediated by mutations in the deoxycytidine kinase (dck) gene. Ann Hematol 71:41–47

    Article  PubMed  CAS  Google Scholar 

  46. van Groeningen CJ, Leyva A, O’Brien AM, Gall HE, Pinedo HM (1986) Phase I and pharmacokinetic study of 5-aza-2′-deoxycytidine (NSC 127716) in cancer patients. Cancer Res 46:4831–4836

    PubMed  Google Scholar 

  47. Veltkamp SA, Hillebrand MJ, Rosing H, Jansen RS, Wickremsinhe ER, Perkins EJ et al (2006) Quantitative analysis of gemcitabine triphosphate in human peripheral blood mononuclear cells using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. J Mass Spectrom 41:1633–1642

    Article  PubMed  CAS  Google Scholar 

  48. Veltkamp SA, Jansen RS, Callies S, Pluim D, Visseren-Grul CM, Rosing H et al (2008) Oral administration of gemcitabine in patients with refractory tumors: a clinical and pharmacologic study. Clin Cancer Res 14:3477–3486

    Article  PubMed  CAS  Google Scholar 

  49. Veltkamp SA, Pluim D, van Eijndhoven MA, Bolijn MJ, Ong FH, Govindarajan R et al (2008) New insights into the pharmacology and cytotoxicity of gemcitabine and 2′,2′-difluorodeoxyuridine. Mol Cancer Ther 7:2415–2425

    Article  PubMed  CAS  Google Scholar 

  50. Veltkamp SA, Pluim D, van Tellingen O, Beijnen JH, Schellens JH (2008) Extensive metabolism and hepatic accumulation of gemcitabine after multiple oral and intravenous administration in mice. Drug Metab Dispos 36:1606–1615

    Article  PubMed  CAS  Google Scholar 

  51. Wang LH, Begley J, St CR III, Harris J, Wakeford C, Rousseau FS (2004) Pharmacokinetic and pharmacodynamic characteristics of emtricitabine support its once daily dosing for the treatment of HIV infection. AIDS Res Hum Retroviruses 20:1173–1182

    Article  PubMed  CAS  Google Scholar 

  52. Wijermans PW, Krulder JW, Huijgens PC, Neve P (1997) Continuous infusion of low-dose 5-Aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 11:1–5

    Article  PubMed  CAS  Google Scholar 

  53. Yang AS, Doshi KD, Choi SW, Mason JB, Mannari RK, Gharybian V et al (2006) DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res 66:5495–5503

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, R.S., Rosing, H., Wijermans, P.W. et al. Decitabine triphosphate levels in peripheral blood mononuclear cells from patients receiving prolonged low-dose decitabine administration: a pilot study. Cancer Chemother Pharmacol 69, 1457–1466 (2012). https://doi.org/10.1007/s00280-012-1850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1850-x

Keywords

Navigation