Skip to main content

Advertisement

Log in

Correlation between low-level expression of the tumor suppressor gene TAp73 and the chemoresistance of human glioma stem cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Glioma stem cells (GSCs) are regarded as the root of glioma growth and recurrence. Chemoresistance is one of the characteristics of GSCs that increases the difficulties in eradicating the cells by anticancer drugs.

Purpose

The objective of this study is to investigate the correlation between expression of the tumor suppressor gene TAp73 and the chemoresistance of human GSCs.

Methods

MTT and tumor sphere formation assays were used to analyze the chemoresistance phenotype of GSCs derived from primary human glioma specimens under cisplatin exposure. Reverse transcription real-time PCR was applied for assaying mRNA levels of TAp73. Protein levels of TAp73, p21, Bax, and cleared caspase 3 were assayed by western blot. Cell apoptosis was analyzed by flow cytometry after the annexin V fluorescence staining.

Results

GSCs exhibited increased chemoresistance compared to differentiated glioma cells (DGCs) derived from the same tumor specimen. The expression of TAp73 was lower in GSCs and was not sensitive to cisplatin treatment as compared to DGCs. Overexpression of TAp73 by transfection increased the apoptosis of GSCs in the presence of cisplatin and reduced the chemoresistance of GSC. TAp73 knockdown by siRNA in DGCs reduced cisplatin-induced apoptosis and increased the resistance to cisplatin.

Conclusion

These findings indicate that TAp73 silencing is hallmark of GSC to maintain their chemoresistance phenotype. Thus, targeting TAp73 may provide a novel strategy to eradicating GSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agami R, Blandino G, Oren M, Shaul Y (1999) Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399:809–813

    Article  PubMed  CAS  Google Scholar 

  2. Bensaad K, Le Bras M, Unsal K, Strano S, Blandino G, Tominaga O, Rouillard D, Soussi T (2003) Change of conformation of the DNA-binding domain of p53 is the only key element for binding of and interference with p73. J Biol Chem 278:10546–10555

    Article  PubMed  CAS  Google Scholar 

  3. Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G, Yulug I, Merlano M, Numico G, Comino A, Attard M, Reelfs O, Gusterson B, Bell AK, Heath V, Tavassoli M, Farrell PJ, Smith P, Lu X, Crook T (2003) p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3:387–402

    Article  PubMed  CAS  Google Scholar 

  4. Capper D, Gaiser T, Hartmann C, Habel A, Mueller W, Herold-Mende C, von Deimling A, Siegelin MD (2009) Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol 117:445–456

    Article  PubMed  CAS  Google Scholar 

  5. Chen X, Zheng Y, Zhu J, Jiang J, Wang J (2001) p73 is transcriptionally regulated by DNA damage, p53, and p73. Oncogene 20:769–774

    Article  PubMed  CAS  Google Scholar 

  6. Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, Fontemaggi G, Fanciulli M, Schiltz L, Blandino G, Balsano C, Levrero M (2002) DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9:175–186

    Article  PubMed  CAS  Google Scholar 

  7. Di Como CJ, Gaiddon C, Prives C (1999) p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19:1438–1449

    PubMed  Google Scholar 

  8. Douc-Rasy S, Barrois M, Echeynne M, Kaghad M, Blanc E, Raguenez G, Goldschneider D, Terrier-Lacombe MJ, Hartmann O, Moll U, Caput D, Benard J (2002) DeltaN-p73alpha accumulates in human neuroblastic tumors. Am J Pathol 160:631–639

    Article  PubMed  CAS  Google Scholar 

  9. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416:560–564

    Article  PubMed  CAS  Google Scholar 

  10. Foster BA, Coffey HA, Morin MJ, Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286:2507–2510

    Article  PubMed  CAS  Google Scholar 

  11. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr, Levrero M, Wang JY (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399:806–809

    Article  PubMed  CAS  Google Scholar 

  12. Irwin MS (2004) Family feud in chemosensitvity: p73 and mutant p53. Cell Cycle 3:319–323

    Article  PubMed  CAS  Google Scholar 

  13. Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG Jr (2003) Chemosensitivity linked to p73 function. Cancer Cell 3:403–410

    Article  PubMed  CAS  Google Scholar 

  14. Jost CA, Marin MC, Kaelin WG Jr (1997) p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 389:191–194

    Article  PubMed  CAS  Google Scholar 

  15. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    Article  PubMed  CAS  Google Scholar 

  16. Kang MK, Kang SK (2007) Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 16:837–847

    Article  PubMed  CAS  Google Scholar 

  17. Kleihues P, Louis DN, OD W (2007) WHO grading of tumours of the central nervous system. In: Louis DN, Ohgaki HWO, Cavenea WK (eds). WHO classification of tumours of the central nervous system 4th edn. IARC, Lyon, pp 10–49

  18. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117:1370–1380

    Article  PubMed  CAS  Google Scholar 

  19. Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchenio T, Lozano G, Harel-Bellan A (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci USA 99:14849–14854

    Article  PubMed  CAS  Google Scholar 

  20. Melino G, De Laurenzi V, Vousden KH (2002) p73: friend or foe in tumorigenesis. Nat Rev Cancer 2:605–615

    Article  PubMed  CAS  Google Scholar 

  21. O’Nions J, Brooks LA, Sullivan A, Bell A, Dunne B, Rozycka M, Reddy A, Tidy JA, Evans D, Farrell PJ, Evans A, Gasco M, Gusterson B, Crook T (2001) p73 is over-expressed in vulval cancer principally as the Delta 2 isoform. Br J Cancer 85:1551–1556

    Article  PubMed  Google Scholar 

  22. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9:45–56

    Article  PubMed  CAS  Google Scholar 

  23. Senoo M, Manis JP, Alt FW, McKeon F (2004) p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 6:85–89

    Article  PubMed  CAS  Google Scholar 

  24. Stiewe T, Tuve S, Peter M, Tannapfel A, Elmaagacli AH, Putzer BM (2004) Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clin Cancer Res 10:626–633

    Article  PubMed  CAS  Google Scholar 

  25. Stiewe T, Zimmermann S, Frilling A, Esche H, Putzer BM (2002) Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res 62:3598–3602

    PubMed  CAS  Google Scholar 

  26. Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A, Del Sal G, Levrero M, Sacchi A, Oren M, Blandino G (2002) Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277:18817–18826

    Article  PubMed  CAS  Google Scholar 

  27. Urist M, Prives C (2002) p53 leans on its siblings. Cancer Cell 1:311–313

    Article  PubMed  CAS  Google Scholar 

  28. Watanabe T, Huang H, Nakamura M, Wischhusen J, Weller M, Kleihues P, Ohgaki H (2002) Methylation of the p73 gene in gliomas. Acta Neuropathol 104:357–362

    PubMed  CAS  Google Scholar 

  29. Yi L, Zhou ZH, Ping YF, Chen JH, Yao XH, Feng H, Lu JY, Wang JM, Bian XW (2007) Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Mod Pathol 20:1061–1068

    Article  PubMed  CAS  Google Scholar 

  30. Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D (1999) p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399:814–817

    Article  PubMed  CAS  Google Scholar 

  31. Yuan ZM, Utsugisawa T, Huang Y, Ishiko T, Nakada S, Kharbanda S, Weichselbaum R, Kufe D (1997) Inhibition of phosphatidylinositol 3-kinase by c-Abl in the genotoxic stress response. J Biol Chem 272:23485–23488

    Article  PubMed  CAS  Google Scholar 

  32. Zaika AI, Slade N, Erster SH, Sansome C, Joseph TW, Pearl M, Chalas E, Moll UM (2002) DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196:765–780

    Article  PubMed  CAS  Google Scholar 

  33. Zawacka-Pankau J, Kostecka A, Sznarkowska A, Hedstrom E, Kawiak A (2010) p73 tumor suppressor protein: a close relative of p53 not only in structure but also in anti-cancer approach? Cell Cycle 9:720–728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ji Ming Wang (Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA) for reviewing the manuscript. This project was supported by the grants from the National Natural Science Foundation of China (NSFC, No. 30873034 and 30973493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Wu, N., Xia, P. et al. Correlation between low-level expression of the tumor suppressor gene TAp73 and the chemoresistance of human glioma stem cells. Cancer Chemother Pharmacol 69, 1205–1212 (2012). https://doi.org/10.1007/s00280-012-1823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1823-0

Keywords

Navigation