Skip to main content

Advertisement

Log in

Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies

  • Mini Review
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The diatomic radical nitric oxide (NO) has been the cause of intense debate with implication in carcinogenesis, tumour progression, invasion, angiogenesis and modulation of therapeutic responses. The tumour biology of NO is highly complex, and this review summarises the various protective and damaging mode of action of NO.

Methods

We reviewed all published literature addressing the complexities of the role of NO in the altered biology of cancer and evaluating promising therapeutic roles of NO/iNOS for anti-cancer therapy.

Results

The available experimental evidences highlight contrasting pro- and anti-tumour effects of iNOS expression, which appear to be reconciled by consideration of the concentrations of NO involved, the temporo-spatial mode of NO action, intracellular targets, cellular redox state and the timing of an apoptotic stimulus. Several clinical and experimental studies indicate that the presence of NO in tumour microenvironment is detrimental to tumour cell survival and metastasis. In contrast, numerous reports suggest that NO can have tumour-promoting effects. NO is a ‘double-edged sword’ in cancer, and this review offers insight into the dichotomous nature of NO and discuss the therapeutic gain that can be achieved by manipulating tumour NO.

Conclusions

NO may exert a biphasic response, such that when NO levels go beyond a critical concentration that would be suitable for tumour growth and survival, growth arrest and/or apoptotic pathways are initiated. These characteristics of NO have been exploited therapeutically with impressive effects in pre-clinical models of cancer to slow tumour growth and to enhance the efficacy of both chemotherapy and radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

NOS:

Nitric oxide synthase

TNF-α:

Tumour necrosis factor-α

IFN-γ:

Interferon-γ

NF-κB:

Nuclear factor-κB

HIF-1:

Hypoxia inducible factor-1

HMGB1:

High-mobility group box 1

MAPK:

Mitogen-activated protein kinase

JNK:

c-Jun N-terminal kinase

VEGF:

Vascular endothelial growth factor

References

  1. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258

    PubMed  CAS  Google Scholar 

  2. Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    PubMed  CAS  Google Scholar 

  3. Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277:38079–38086

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt HH, Walter U (1994) NO at work. Cell 78:919–925

    Article  PubMed  CAS  Google Scholar 

  5. Hibbs JBJ (1991) Synthesis of nitric oxide from l-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol 142:565–569

    Article  PubMed  CAS  Google Scholar 

  6. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263:1612–1615

    Article  PubMed  CAS  Google Scholar 

  7. Tendler DS, Bao C, Wang T, Huang EL, Ratovitski EA, Pardoll DA, Lowenstein CJ (2001) Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis. Cancer Res 61:3682–3688

    PubMed  CAS  Google Scholar 

  8. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio LA (1995) Hypoxia responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182:1683–1693

    Article  PubMed  CAS  Google Scholar 

  9. Kepp O, Tesniere A, Zitvogel L, Kroemer G (2008) The immunogenicity of tumor cell death. Curr Op Oncol 21:71–76

    Article  CAS  Google Scholar 

  10. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in Inflammation and Cancer. Annu Rev Immunol 28:367–388

    Article  PubMed  CAS  Google Scholar 

  11. Taguchi A, Blood DC, del Toro G et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360

    Article  PubMed  CAS  Google Scholar 

  12. Huttunen HJ, Kuja-Panula J, Sorci G et al (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275:40096–40105

    Article  PubMed  CAS  Google Scholar 

  13. Kuniyasu H, Chihara Y, Kondo H (2003) Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer 104:722–777

    Article  PubMed  CAS  Google Scholar 

  14. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S (1995) Nitric oxide synthase activity in human breast cancer. Br J Cancer 72:41–44

    Article  PubMed  CAS  Google Scholar 

  15. Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA (1995) Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 55:727–730

    PubMed  CAS  Google Scholar 

  16. Masri FA, Comhair SA, Koeck T, Xu W, Janocha A, Ghosh S, Dweik RA, Golish J, Kinter M, Stuehr DJ, Erzurum SC, Aulak KS (2005) Abnormalities in nitric oxide and its derivatives in lung cancer. Am J Respir Crit Care Med 172:597–605

    Article  PubMed  Google Scholar 

  17. Klotz T, Bloch W, Volberg C, Engelmann U, Addicks K (1998) Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer 82:1897–1903

    Article  PubMed  CAS  Google Scholar 

  18. Lagares-Garcia JA, Moore RA, Collier B, Heggere M, Diaz F, Qian F (2001) Nitric oxide synthase as a marker in colorectal carcinoma. Am Surg 67:709–713

    PubMed  CAS  Google Scholar 

  19. Hajri A, Metzger E, Vallat F, Coffy S, Flatter E, Evrard S, Marescaux J, Aprahamian M (1998) Role of nitric oxide in pancreatic tumour growth: in vivo and in vitro studies. Br J Cancer 78:841–849

    Article  PubMed  CAS  Google Scholar 

  20. Weninger W, Rendl M, Pammer J, Mildner M, Tschugguel W, Schneeberger C, Stürzl M, Tschachler E (1998) Nitric oxide synthases in Kaposi’s sarcoma are expressed predominantly by vessels and tissue macrophages. Lab Invest 78:949–955

    PubMed  CAS  Google Scholar 

  21. Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA (2000) Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 6:4768–4775

    PubMed  CAS  Google Scholar 

  22. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S (1994) Nitric oxide synthase activity in human gynecological cancer. Cancer Res 54:1352–1354

    PubMed  CAS  Google Scholar 

  23. Tschugguel W, Pustelnik T, Lass H, Mildner M, Weninger W, Schneeberger C, Jansen B, Tschachler E, Waldhör T, Huber JC, Pehamberger H (1999) Inducible nitric oxide synthase (iNOS) expression may predict distant metastasis in human melanoma. Br J Cancer 79:1609–1612

    Article  PubMed  CAS  Google Scholar 

  24. Loibl S, von Minckwitz G, Weber S, Sinn HP, Schini-Kerth VB, Lobysheva I, Nepveu F, Wolf G, Strebhart K, Kufmann M (2002) Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer 95:1191–1198

    Article  PubMed  CAS  Google Scholar 

  25. Dudzinski DM, Michel T (2007) Life history of eNOS: partners and pathways. Cardiovascular Res 75:247–260

    Article  CAS  Google Scholar 

  26. Vakkala M, Paakko P, Soini Y (2000) eNOS expression is associated with the estrogen and progesterone receptor status in invasive breast carcinoma. Int J Oncol 17:667–671

    PubMed  CAS  Google Scholar 

  27. Zheng PP, Hop WC, Luider TM et al (2007) Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Ann Neurol 62:40–48

    Article  PubMed  CAS  Google Scholar 

  28. Lim KH, Ancrile BB, Kashatus DF et al (2008) Tumour maintenance is mediated by eNOS. Nature 452:646–649

    Article  PubMed  CAS  Google Scholar 

  29. Gosink EC, Forsberg EJ (1993) Effects of ATP and bradykinin on endothelial cell Ca2+ homeostasis and formation of cGMP and prostacyclin. Am J Physiol Cell Physiol 265:C1620–C1629

    CAS  Google Scholar 

  30. Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R (1996) Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 78:750–758

    PubMed  CAS  Google Scholar 

  31. Wang L, Shi GG, Yao JC et al (2005) Expression of endothelial nitric oxide synthase correlates with the angiogenic phenotype of and predicts poor prognosis in human gastric cancer. Gastric Cancer 8:18–28

    Article  PubMed  CAS  Google Scholar 

  32. Ariel I, Hochberg A, Shochina M (1998) Endothelial nitric oxide synthase immunoreactivity in early gestation and in trophoblastic disease. J Clin Pathol 51:427–431

    Article  PubMed  CAS  Google Scholar 

  33. Bauer PM, Fulton D, Boo YC, Sorescu GP, Kemp BE, Jo H et al (2003) Compensatory phosphorylation and protein–protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric oxide synthase. J Biol Chem 278:14841–14849

    Article  PubMed  CAS  Google Scholar 

  34. Dudzinski DM, Igarashi J, Greif D, Michel T (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46:235–276

    Article  PubMed  CAS  Google Scholar 

  35. Michell BJ, Chen ZZ, Tiganis T, Stapleton D, Katsis F et al (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276:17625–17628

    Article  PubMed  CAS  Google Scholar 

  36. Duda DG, Fukumura D, Jain RK (2004) Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med 10:143–145

    Article  PubMed  CAS  Google Scholar 

  37. Chinje E, Stratford IJ (1997) The role of nitric oxide in growth of solid tumours: a balancing act. Essays Biochem 32:61–72

    PubMed  CAS  Google Scholar 

  38. Lincoln TM, Dey N, Sellak HH (2001) cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91:1421–1430

    PubMed  CAS  Google Scholar 

  39. Brunori M, Giuffre A, Forte E, Mastronicola D, Barone MC, Sarti P (2004) Control of cytochrome c oxidase activity by nitric oxide. Biochim Biophys Acta 1655:365–371

    Article  PubMed  CAS  Google Scholar 

  40. Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci (USA) 98:355–360

    Article  CAS  Google Scholar 

  41. Cooper CE, Giulivi C (2007) Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am J Physiol Cell Physiol 292:C1993–C2003

    Article  PubMed  CAS  Google Scholar 

  42. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    Article  PubMed  CAS  Google Scholar 

  43. Ridnour LA, Thomas DD, Donzelli S, Espey MG, Roberts DD, Wink DA, Isenberg JS (2006) The biphasic nature of nitric oxide responses in tumor biology. Antioxid Red Signal 8:1329–1337

    Article  CAS  Google Scholar 

  44. Leon L, Jeannin J-F, Bettaieb A (2008) Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 19:77–83

    Article  PubMed  CAS  Google Scholar 

  45. Park HS, Yu JW, Cho JH, Kim MS, Huh SH, Ryoo K, Choi EJ (2004) Inhibition of apoptosis signal-regulating kinase 1 by nitric oxide through a thiol redox mechanism. J Biol Chem 279:7584–7590

    Article  PubMed  CAS  Google Scholar 

  46. Sumbayev VV (2003) S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. Arch Biochem Biophys 415:133–136

    Article  PubMed  CAS  Google Scholar 

  47. DelaTorre A, Schroeder RA, Kuo PC (1997) Alteration of NF-kappa B p50 DNA binding kinetics by S-nitrosylation. Biochem Biophy Res Comm 238:703–706

    Article  CAS  Google Scholar 

  48. Gopalakrishna R, Chen ZH, Gundimeda U (1993) Nitric oxide and nitric oxide generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J Biol Chem 268:27180–27185

    PubMed  CAS  Google Scholar 

  49. Park HS, Huh SH, Kim MS, Lee SH, Choi EJ (2000) Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proc Natl Acad Sci 97:14382–14387

    Article  PubMed  CAS  Google Scholar 

  50. Teng KK, Esposito DK, Schwartz GD, Lander HM, Hempstead BL (1999) Activation of c-Ha-Ras by nitric oxide modulates survival responsiveness in neuronal PC12 cells. J Biol Chem 274:37315–37320

    Article  PubMed  CAS  Google Scholar 

  51. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  PubMed  CAS  Google Scholar 

  52. MacMillan-Crow LA, Greendorfer JS, Vickers SM, Thompson JA (2000) Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys 377:350–356

    Article  PubMed  CAS  Google Scholar 

  53. West MB, Hill BG, Xuan YT, Bhatnagar A (2006) Protein glutathiolation by nitric oxide: an intracellular mechanism regulating redox protein modification. FASEB J 20:1715–1717

    Article  PubMed  CAS  Google Scholar 

  54. Maulik D, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M (2008) Activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of guinea pig fetus at term: role of nitric oxide. Neurosci Lett 439:94–99

    Article  PubMed  CAS  Google Scholar 

  55. Lander HM, Ogiste JS, Pearce SF, Levi R, Novogrodsky A (1995) Nitric oxide stimulated guanine nucleotide exchange on p21ras. J Biol Chem 270:7017–7020

    Article  PubMed  CAS  Google Scholar 

  56. Duhé RJ, Evans GA, Erwin RA, Kirken RA, Cox GW, Farrar WL (1998) Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Natl Acad Sci 95:126–131

    Article  PubMed  Google Scholar 

  57. Tejedo JR, Cahuana GM, Ramirez R, Esbert M, Jiménez J, Sobrino F, Bedoya FJ (2004) Nitric oxide triggers the phosphatidylinositol 3-kinase/Akt survival pathway in insulin-producing RINm5F cells by arousing Src to activate insulin receptor substrate-1. Endocrinology 145:2319–2327

    Article  PubMed  CAS  Google Scholar 

  58. Lander HM, Jacovina AT, Davis RJ, Tauras JM (1996) Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 271:19705–19709

    Article  PubMed  CAS  Google Scholar 

  59. Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2:149–156

    Article  PubMed  CAS  Google Scholar 

  60. Pervin S, Singh R, Chaudhuri G (2008) Nitric Oide, Nω-hydroxy-l-arginine and breast cancer. Nitric Oxide 19:103–106

    Article  PubMed  CAS  Google Scholar 

  61. Thomas DD, Espey MG, Ridnour LA, Hofseth LJ, Mancardi D, Harris CC, Wink DA (2004) Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci 101:8894–8899

    Article  PubMed  CAS  Google Scholar 

  62. Pervin S, Singh R, Hernandez E, Wu G, Chaudhuri G (2007) Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res 67:289–299

    Article  PubMed  CAS  Google Scholar 

  63. Schonhoff CM, Gaston B, Mannick JB (2003) Nitrosylation of cytochrome c during apoptosis. J Biol Chem 278:18265–18270

    Article  PubMed  CAS  Google Scholar 

  64. Millet A, Bettaieb A, Renaud F, Prevotat L, Hammann A, Solary E, Mignotte B, Jeannin JF (2002) Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123:235–246

    Article  PubMed  CAS  Google Scholar 

  65. Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154:1111–1116

    Article  PubMed  CAS  Google Scholar 

  66. Iyer AKV, Azad N, Wang L, Rojanasakul Y (2008) Role of S-nitrosylation in apoptosis resistance and angiogenesis. Nitric Oxide 19:146–151

    Article  PubMed  CAS  Google Scholar 

  67. Cook T, Wang Z, Alber S, Liu K, Watkins SC, Vodovotz Y, Billiar TR, Blumberg D (2004) Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res 64:8015–8021

    Article  PubMed  CAS  Google Scholar 

  68. Zhang Y, Xiong Y (2001) A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292:1910–1915

    Article  PubMed  CAS  Google Scholar 

  69. Wang X, Zalcenstein A, Oren M (2003) Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death Differ 10:468–476

    Article  PubMed  CAS  Google Scholar 

  70. Yakovlev VA, Bayden AS, Graves PR, Kellogg GE, Mikkelsen RB (2010) Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Biochemistry 49:5331–5339

    Article  PubMed  CAS  Google Scholar 

  71. Hofseth LJ, Saito S, Hussain SP, Espey MG, Miranda KM, Araki Y, Jhappan C, Higashimoto Y, He P, Linke SP, Quezado MM, Zurer I, Rotter V, Wink DA, Appella E, Harris CC (2003) Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci 1000:143–148

    Article  CAS  Google Scholar 

  72. Cobbs CS, Samanta M, Harkins LE, Gillespie GY, Merrick BA, MacMillan-Crow LA (2001) Evidence for peroxynitrite-mediated modifications to p53 in human gliomas: possible functional consequences. Arch Biochem Biophys 394:167–172

    Article  PubMed  CAS  Google Scholar 

  73. Xu W, Liu L, Smith GC, Charles IG (2000) Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nat Cell Biol 2:339–345

    Article  PubMed  CAS  Google Scholar 

  74. Jones MK, Tsugawa K, Tarnawski AS, Baatar D (2004) Dual actions of nitric oxide on angiogenesis: possible roles of PKC, ERK, and AP-1. Biochem Biophys Res Comm 318:520–528

    Article  PubMed  CAS  Google Scholar 

  75. Pervin S, Singh R, Freije WA, Chaudhuri G (2003) MKP-1-induced dephosphorylation of extracellular signal-regulated kinase is essential for triggering nitric oxide-induced apoptosis in human breast cancer cell lines: implications in breast cancer. Cancer Res 63:8853–8860

    PubMed  CAS  Google Scholar 

  76. Chao JI, Kuo PC, Hsu TS (2004) Down-regulation of survivin in nitric oxide-induced cell growth inhibition and apoptosis of the human lung carcinoma cells. J Biol Chem 279:20267–20276

    Article  PubMed  CAS  Google Scholar 

  77. Garbán HJ, Bonavida B (2001) Nitric oxide inhibits the transcription repressor Yin-Yang 1 binding activity at the silencer region of the Fas promoter: a pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J Immunol 167:75–81

    PubMed  Google Scholar 

  78. Garbán HJ, Bonavida B (2001) Nitric oxide disrupts H2O2-dependent activation of nuclear factor kappa B. role in sensitization of human tumor cells to tumor necrosis factor-alpha-induced cytotoxicity. J Biol Chem 276:8918–8923

    Article  PubMed  Google Scholar 

  79. Tozer GM, Prise VE, Chaplin DJ (1997) Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with l-arginine. Cancer Res 57:948–955

    PubMed  CAS  Google Scholar 

  80. Ishii Y, Ogura T, Tatemichi M, Fujisawa H, Otsuka F, Esumi H (2003) Induction of matrix metalloproteinase gene transcription by nitric oxide and mechanisms of MMP-1 gene induction in human melanoma cell lines. Int J Cancer 103:161–168

    Article  PubMed  CAS  Google Scholar 

  81. Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H (2001) Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Jpn J Cancer Res 92:439–451

    PubMed  CAS  Google Scholar 

  82. Aurello P, Rossi Del Monte S, D’Angelo F, Cicchini C, Ciardi A, Bellagamba R, Ravaioli M, Ramacciato G (2009) Vascular endothelial growth factor C and microvessel density in gastric carcinoma: correlation with clinicopathological factors. Our experience and review of the literature. Oncol Res 17:405–411

    Article  PubMed  Google Scholar 

  83. Nakamura Y, Yasuoka H, Tsujimoto M, Yang Q, Tsukiyama A, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2003) Clinicopathological significance of vascular endothelial growth factor-C in breast carcinoma with long-term follow-up. Mod Pathol 16:309–314

    Article  PubMed  Google Scholar 

  84. Ichinoe M, Mikami T, Shiraishi H, Okayasu I (2004) High microvascular density is correlated with high VEGF, iNOS and COX-2 expression in penetrating growth-type early gastric carcinomas. Histopathology 45:612–618

    Article  PubMed  CAS  Google Scholar 

  85. Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, Benson AB III (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the eastern cooperative oncology group study E3200. J Clin Oncol 25:1539–1544

    Article  PubMed  CAS  Google Scholar 

  86. Cahlin C, Gelin J, Delbro D, Lönnroth C, Doi C, Lundholm K (2000) Effect of cyclooxygenase and nitric oxide synthase inhibitors on tumor growth in mouse tumor models with and without cancer cachexia related to prostanoids. Cancer Res 60:1742–1749

    PubMed  CAS  Google Scholar 

  87. Radomski MW, Jenkins DC, Holms L, Moncada S (1991) Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res 51:6073–6078

    PubMed  CAS  Google Scholar 

  88. Dong Z, Staroselsky AH, Qi X, Xie K, Fidler IJ (1994) Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res 54:789–793

    PubMed  CAS  Google Scholar 

  89. Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, Fidler IJ (1995) Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 181:1333–1343

    Article  PubMed  CAS  Google Scholar 

  90. Le X, Wei D, Huang S, Lancaster JR Jr, Xie K (2005) Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its upregulation of protumor factors. Proc Natl Acad Sci 102:8758–8763

    Article  PubMed  CAS  Google Scholar 

  91. Kiziltepe T, Hideshima T, Ishitsuka K, Ocio EM, Raje N, Catley L, Li C-Q, Trudel LJ, Yasui H, Vallet S, Kutok JL, Chauhan D, Mitsiades CS, Saavedra JE, Wogan GN, Keefer LK, Shami PJ, Anderson KC (2007) JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110:709–718

    Article  PubMed  CAS  Google Scholar 

  92. Postovit LM, Adams MA, Lash GE, Heaton JP, Graham CH (2004) Nitric oxide-mediated regulation of hypoxia-induced B16F10 melanoma metastasis. Int J Cancer 108:47–53

    Article  PubMed  CAS  Google Scholar 

  93. Konovalova NP, Goncharova SA, Volkova LM, Rajewskaya TA, Eremenko LT, Korolev AM (2003) Nitric oxide donor increases the efficiency of cytostatic therapy and reatrds the development of drug resistance. Nitric Oxide 8:59–64

    Article  PubMed  CAS  Google Scholar 

  94. Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A (2005) Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 65:516–525

    PubMed  CAS  Google Scholar 

  95. Muir CP, Adams MA, Graham CH (2006) Nitric oxide attenuates resistance to doxorubicin in three-dimensional aggregates of human breast carcinoma cells. Breast Cancer Res Treat 96:169–176

    Article  PubMed  CAS  Google Scholar 

  96. Cook JA, Krishna MC, Pacelli R, DeGraff W, Liebmann J, Mitchell JB, Russo A, Wink DA (1997) Nitric oxide enhancement of melphalan-induced cytotoxicity. Br J Cancer 76:325–334

    Article  PubMed  CAS  Google Scholar 

  97. Adams DJ, Levesque MC, Weinberg JB, Smith KL, Flowers JL, Moore J, Colvin OM, Silber R (2001) Nitric oxide enhancement of fludarabine cytotoxicity for BCLL lymphocytes. Leukemia 15:1852–1859

    PubMed  CAS  Google Scholar 

  98. Yasuda H, Yamaya M, Nakayama K, Sasaki T, Ebihara S, Kanda A, Asada M, Inoue D, Suzuki T, Okazaki T, Takahashi H, Yoshida M, Kaneta T, Ishizawa K, Yamanda S, Tomita N, Yamasaki M, Kikuchi A, Kubo H, Sasaki H (2006) Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 24:688–694

    Article  PubMed  CAS  Google Scholar 

  99. Huang LE, Bindra RS, Glazer PM, Harris AL (2007) Hypoxia-induced genetic instability-a calculated mechanism underlying tumor progression. J Mol Med 85:139–148

    Article  PubMed  CAS  Google Scholar 

  100. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy-eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59:5863–5870

    PubMed  CAS  Google Scholar 

  101. Sandau KB, Fandrey J, Brune B (2001) Accumulation of HIF-1alpha under the influence of nitric oxide. Blood 97:1009–1015

    Article  PubMed  CAS  Google Scholar 

  102. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1α by inhibition of prolyl hydroxylases. Mol Biol Cell 14:3470–3481

    Article  PubMed  CAS  Google Scholar 

  103. Mateo J, Garcia-Lecea M, Cadenas S, Hernandez C, Moncada S (2003) Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways. Biochem J 376:537–544

    Article  PubMed  CAS  Google Scholar 

  104. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  105. McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427–442

    Article  CAS  Google Scholar 

  106. Peters KB, Brown JM (1993) Tirapazamine: a hypoxia-activated topoisomerase II poison. Cancer Res 62:5248–5253

    Google Scholar 

  107. Chinje EC, Cowen RL, Feng J, Sharma SP, Wind NS, Harris AL, Stratford IJ (2003) Non-nuclear localized human NOSII enhances the bioactivation and toxicity of tirapazamine (SR4233) in vitro. Mol Pharmacol 63:1248–1255

    Article  PubMed  CAS  Google Scholar 

  108. Patterson LH (1993) Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent. Cancer Metastasis Rev 12:119–134

    Article  PubMed  CAS  Google Scholar 

  109. Cowen RL, Singh S, Chinje EC, Al-Assah R, Harris P, Dunk C, Stratford IJ (2005) Adenoviral delivery of inducible nitric oxide synthase (NOSII) enhances AQ4 N/radiation cytotoxicity within hypoxic tumor cells. AACR Meeting Abstracts 314-A

  110. Robson T, Worthington J, McKeown SR, Hirst DG (2005) Radiogenic therapy: novel approaches for enhancing tumor radiosensitivity. Technol Cancer Res Treat 4:343–361

    PubMed  CAS  Google Scholar 

  111. Gray LH, Green FO, Hawes CA (1958) Effect of nitric oxide on the radiosensitivity of tumour cells. Nature 182:952–953

    Article  PubMed  CAS  Google Scholar 

  112. Mitchell JB, Wink DA, DeGraff W, Gamson J, Keefer LK, Krishna MC (1993) Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res 53:5845–5848

    PubMed  CAS  Google Scholar 

  113. Verovski VN, Van den Berge DL, Soete GA, Bols BL, Storme GA (1996) Intrinsic radiosensitivity of human pancreatic tumour cells and the radiosensitising potency of the nitric oxide donor sodium nitroprusside. Br J Cancer 74:1734–1742

    Article  PubMed  CAS  Google Scholar 

  114. Wardman P, Rothkamm K, Folkes LK, Woodcock M, Johnston PJ (2007) Radiosensitization by nitric oxide at low radiation doses. Radiat Res 167:475–484

    Article  PubMed  CAS  Google Scholar 

  115. Singh S, Cowen RL, Chinje EC, Stratford IJ (2009) The impact of intracellular generation of nitric oxide on the radiation response of human tumor cells. Radiat Res 171:572–580

    Article  PubMed  CAS  Google Scholar 

  116. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74

    Article  PubMed  CAS  Google Scholar 

  117. Abrams J (1992) Mechanisms of action of the organic nitrates in the treatment of myocardial ischemia. Am J Cardiol 70:30B–42B

    Article  PubMed  CAS  Google Scholar 

  118. Soler MN, Bobe P, Benihoud K, Lemaire G, Roos BA, Lausson S (2000) Gene therapy of rat medullary thyroid cancer by naked nitric oxide synthase II DNA injection. J Gene Med 2:344–352

    Article  PubMed  CAS  Google Scholar 

  119. Wang Z, Cook T, Alber S, Liu K, Kovesdi I, Watkins SK, Vodovotz Y, Billiar TR, Blumberg D (2004) Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res 64:1386–1395

    Article  PubMed  CAS  Google Scholar 

  120. Worthington J, McCarthy HO, Barrett E, Adams C, Robson T, Hirst DG (2004) Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J Gene Med 6:673–680

    Article  PubMed  CAS  Google Scholar 

  121. Halliwill JR, Minson CT, Joyner MJ (2000) Effect of systemic nitric oxide synthase inhibition on postexercise hypotension in humans. J Appl Physiol 89:1830–1836

    PubMed  CAS  Google Scholar 

  122. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12:311–320

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support received from the Department of Biotechnology at Sharda University. We apologise to researchers whose findings that form the basis for our current knowledge in this field could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simendra Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Gupta, A.K. Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies. Cancer Chemother Pharmacol 67, 1211–1224 (2011). https://doi.org/10.1007/s00280-011-1654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1654-4

Keywords

Navigation