Skip to main content

Advertisement

Log in

Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Lymphopenia is a predictor of the efficacy and hematological toxicity of chemotherapy in various advanced cancers. There is little data about this relationship in colorectal cancer. In this retrospective study, the influence of pretreatment lymphopenia on hematological toxicity and the efficacy of chemotherapy was investigated in colorectal cancer patients.

Patients and methods

In total, 260 patients were included in the study. Correlations between pre-treatment lymphopenia (lymphocyte count < 1,000/μl) and the occurrence of hematological toxicity and efficacy of first-line palliative chemotherapy were investigated.

Results

Lymphopenia was found in 49/260 (19%) patients. Ten of these patients with lymphopenia (20.4%) experienced severe hematological toxicity compared with 17 of the remaining 211 (8%) patients (P = 0.01). Lymphopenia was identified as an independent factor for hematological toxicity. Among patients who received palliative chemotherapy, the objective response rate was significantly lower in lymphopenic patients than in the other patients (12.5% vs. 40.2%; P = 0.004). Lymphopenia was strongly associated with shorter progression-free survival (median 4 vs. 7 months; P = 0.033) and shorter overall survival (median 16 vs. 24 months, P = 0.024). Multivariate analysis revealed that lymphopenia had an independent effect on survival.

Conclusions

Our findings show that lymphopenia is an independent predictive factor for both hematological toxicity and efficacy of chemotherapy in colorectal cancer. Pre-treatment lymphocyte count may represent a simple and new predictive biomarker of chemotherapy effects in colorectal cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Murray T, Ward E et al (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30

    Article  PubMed  Google Scholar 

  2. Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352:476–487

    Article  PubMed  CAS  Google Scholar 

  3. Andre T, Boni C, Mounedji-Boudiaf L et al (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350:2343–2351

    Article  PubMed  CAS  Google Scholar 

  4. Tang PA, Bentzen SM, Chen EX, Siu LL (2007) Surrogate end points for median overall survival in metastatic colorectal cancer: literature-based analysis from 39 randomized controlled trials of first-line chemotherapy. J Clin Oncol 25:4562–4568

    Article  PubMed  Google Scholar 

  5. Kohne CH, Cunningham D, Di CF et al (2002) Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: results of a multivariate analysis of 3,825 patients. Ann Oncol 13:308–317

    Article  PubMed  CAS  Google Scholar 

  6. Freyer G, Rougier P, Bugat R et al (2000) Prognostic factors for tumour response, progression-free survival and toxicity in metastatic colorectal cancer patients given irinotecan (CPT-11) as second-line chemotherapy after 5FU failure. CPT-11 F205, F220, F221 and V222 study groups. Br J Cancer 83:431–437

    Article  PubMed  CAS  Google Scholar 

  7. Sargent DJ, Kohne CH, Sanoff HK et al (2009) Pooled safety and efficacy analysis examining the effect of performance status on outcomes in nine first-line treatment trials using individual data from patients with metastatic colorectal cancer. J Clin Oncol 27:1948–1955

    Article  PubMed  Google Scholar 

  8. Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  PubMed  CAS  Google Scholar 

  9. Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  10. Whiteside TL (2006) Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16:3–15

    Article  PubMed  CAS  Google Scholar 

  11. Kaplan DH, Shankaran V, Dighe AS et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561

    Article  PubMed  CAS  Google Scholar 

  12. Shankaran V, Ikeda H, Bruce AT et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  PubMed  CAS  Google Scholar 

  13. Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666

    Article  PubMed  CAS  Google Scholar 

  14. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  15. Ohtani H (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 7:4

    PubMed  Google Scholar 

  16. Atreya I, Neurath MF (2008) Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev Anticancer Ther 8:561–572

    Article  PubMed  CAS  Google Scholar 

  17. Riesco A (1970) Five-year cancer cure: relation to total amount of peripheral lymphocytes and neutrophils. Cancer 25:135–140

    Article  PubMed  CAS  Google Scholar 

  18. Ownby HE, Roi LD, Isenberg RR, Brennan MJ (1983) Peripheral lymphocyte and eosinophil counts as indicators of prognosis in primary breast cancer. Cancer 52:126–130

    Article  PubMed  CAS  Google Scholar 

  19. Hasenclever D, Diehl V (1998) A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med 339:1506–1514

    Article  PubMed  CAS  Google Scholar 

  20. Ray-Coquard I, Cropet C, Van Glabbeke M et al (2009) Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas and lymphomas. Cancer Res 69:5383–5391

    Article  PubMed  CAS  Google Scholar 

  21. Ray-Coquard I, Ghesquiere H, Bachelot T et al (2001) Identification of patients at risk for early death after conventional chemotherapy in solid tumours and lymphomas. Br J Cancer 85:816–822

    Article  PubMed  CAS  Google Scholar 

  22. Ray-Coquard I, Borg C, Bachelot T et al (2003) Baseline and early lymphopenia predict for the risk of febrile neutropenia after chemotherapy. Br J Cancer 88:181–186

    Article  PubMed  CAS  Google Scholar 

  23. Alexandre J, Rey E, Girre V et al (2007) Relationship between cytochrome 3A activity, inflammatory status and the risk of docetaxel-induced febrile neutropenia: a prospective study. Ann Oncol 18:168–172

    Article  PubMed  CAS  Google Scholar 

  24. Blay JY, Le Cesne A, Mermet C et al (1998) A risk model for thrombocytopenia requiring platelet transfusion after cytotoxic chemotherapy. Blood 92:405–410

    PubMed  CAS  Google Scholar 

  25. Ray-Coquard I, Le Cesne A, Rubio MT et al (1999) Risk model for severe anemia requiring red blood cell transfusion after cytotoxic conventional chemotherapy regimens. The Elypse 1 study group. J Clin Oncol 17:2840–2846

    PubMed  CAS  Google Scholar 

  26. Lissoni P, Brivio F, Fumagalli L et al (2004) Efficacy of cancer chemotherapy in relation to the pretreatment number of lymphocytes in patients with metastatic solid tumors. Int J Biol Mark 19:135–140

    CAS  Google Scholar 

  27. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National cancer institute of the United States, National cancer institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  28. Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observation. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  29. Cox DR (1972) Regression models and life-tables. J R Stat Soc 34(Ser B):187–220

    Google Scholar 

  30. Lissoni P, Fumagalli L, Paolorossi F, Mandala M (1999) Changes in lymphocyte number during cancer chemotherapy and their relation to clinical response. Int J Biol Mark 14:115–117

    CAS  Google Scholar 

  31. Maltoni M, Pirovano M, Nanni O et al (1997) Biological indices predictive of survival in 519 Italian terminally ill cancer patients. Italian multicenter study group on palliative care. J Pain Symp Manag 13:1–9

    Article  CAS  Google Scholar 

  32. Lissoni P, Brivio F, Fumagalli L et al (2005) Enhancement of the efficacy of chemotherapy with oxaliplatin plus 5-fluorouracil by pretreatment with IL-2 subcutaneous immunotherapy in metastatic colorectal cancer patients with lymphocytopenia prior to therapy. In Vivo 19:1077–1080

    PubMed  CAS  Google Scholar 

  33. Saito T, Kuss I, Dworacki G et al (1999) Spontaneous ex vivo apoptosis of peripheral blood mononuclear cells in patients with head and neck cancer. Clin Cancer Res 5:1263–1273

    PubMed  CAS  Google Scholar 

  34. Dworacki G, Meidenbauer N, Kuss I et al (2001) Decreased zeta chain expression and apoptosis in CD3+ peripheral blood T lymphocytes of patients with melanoma. Clin Cancer Res 7:947s–957s

    PubMed  CAS  Google Scholar 

  35. Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262

    Article  PubMed  CAS  Google Scholar 

  36. Blay JY, Negrier S, Combaret V et al (1992) Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res 52:3317–3322

    PubMed  CAS  Google Scholar 

  37. Aggarwal S, Gollapudi S, Gupta S (1999) Increased TNF-alpha-induced apoptosis in lymphocytes from aged humans: changes in TNF-alpha receptor expression and activation of caspases. J Immunol 162:2154–2161

    PubMed  CAS  Google Scholar 

  38. Borg C, Ray-Coquard I, Philip I et al (2004) CD4 lymphopenia as a risk factor for febrile neutropenia and early death after cytotoxic chemotherapy in adult patients with cancer. Cancer 101:2675–2680

    Article  PubMed  Google Scholar 

  39. Jansman FG, Sleijfer DT, Coenen JL et al (2000) Risk factors determining chemotherapeutic toxicity in patients with advanced colorectal cancer. Drug Saf 23:255–278

    Article  PubMed  CAS  Google Scholar 

  40. Blay JY, Chauvin F, Le Cesne A et al (1996) Early lymphopenia after cytotoxic chemotherapy as a risk factor for febrile neutropenia. J Clin Oncol 14:636–643

    PubMed  CAS  Google Scholar 

  41. Hoffmann TK, Dworacki G, Tsukihiro T et al (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8:2553–2562

    PubMed  Google Scholar 

  42. Mitry E, Douillard JY, Van Cutsem E et al (2004) Predictive factors of survival in patients with advanced colorectal cancer: an individual data analysis of 602 patients included in irinotecan phase III trials. Ann Oncol 15:1013–1017

    Article  PubMed  CAS  Google Scholar 

  43. Meguid RA, Slidell MB, Wolfgang CL et al (2008) Is there a difference in survival between right versus left-sided colon cancers? Ann Surg Oncol 15:2388–2394

    Article  PubMed  Google Scholar 

  44. Rosenberg SA, Sportes C, Ahmadzadeh M et al (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29:313–319

    Article  PubMed  CAS  Google Scholar 

  45. Zhang H, Chua KS, Guimond M et al (2005) Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+ CD25+ regulatory T cells. Nat Med 11:1238–1243

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors indicated no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lecomte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cézé, N., Thibault, G., Goujon, G. et al. Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy. Cancer Chemother Pharmacol 68, 1305–1313 (2011). https://doi.org/10.1007/s00280-011-1610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1610-3

Keywords

Navigation