Skip to main content

Advertisement

Log in

A combined pharmacokinetic model for the hypoxia-targeted prodrug PR-104A in humans, dogs, rats and mice predicts species differences in clearance and toxicity

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

PR-104 is a phosphate ester that is systemically converted to the corresponding alcohol PR-104A. The latter is activated by nitroreduction in tumours to cytotoxic DNA cross-linking metabolites. Here, we report a population pharmacokinetic (PK) model for PR-104 and PR-104A in non-human species and in humans.

Methods

A compartmental model was used to fit plasma PR-104 and PR-104A concentration–time data after intravenous (i.v.) dosing of humans, Beagle dogs, Sprague–Dawley rats and CD-1 nude mice. Intraperitoneal (i.p.) PR-104 and i.v. PR-104A dosing of mice was also investigated. Protein binding was measured in plasma from each species. Unbound drug clearances and volumes were scaled allometrically.

Results

A two-compartment model described the disposition of PR-104 and PR-104A in all four species. PR-104 was cleared rapidly by first-order (mice, rats, dogs) or mixed-order (humans) metabolism to PR-104A in the central compartment. The estimated unbound human clearance of PR104A was 211 L/h/70 kg, with a steady state unbound volume of 105 L/70 kg. The size equivalent unbound PR-104A clearance was 2.5 times faster in dogs, 0.78 times slower in rats and 0.63 times slower in mice, which may reflect reported species differences in PR-104A O-glucuronidation.

Conclusions

The PK model demonstrates faster size equivalent clearance of PR-104A in dogs and humans than rodents. Dose-limiting myelotoxicity restricts the exposure of PR-104A in humans to approximately 25% of that achievable in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Patel K, Foehrenbacher A, Secomb TW, Wilson WR, Hicks KO. A spatially resolved pharmacokinetic/pharmacodynamic model for hypoxic activation and bystander killing by the bioreductive prodrug PR-104. Manuscript in preparation.

  2. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction corrected visual predictive checks. http://www.go-acop.org/sites/all/assets/webform/PC_VPC_Abstract_ACoP_090715_final.doc.

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  2. Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  PubMed  CAS  Google Scholar 

  3. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    Article  PubMed  CAS  Google Scholar 

  4. Erler JT, Giaccia AJ (2006) Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66:10238–10241

    Article  PubMed  CAS  Google Scholar 

  5. O’Donnell JL, Joyce MR, Shannon AM, Harmey J, Geraghty J, Bouchier-Hayes D (2006) Oncological implications of hypoxia inducible factor-1alpha (HIF-1alpha) expression. Cancer Treat Rev 32:407–416

    Article  PubMed  Google Scholar 

  6. Bristow RG, Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    Article  PubMed  CAS  Google Scholar 

  7. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Bio 39:1358–1366

    Article  CAS  Google Scholar 

  8. Koong AC, Chauhan V, Romero-Ramirez L (2006) Targeting XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther 5:756–759

    Article  PubMed  CAS  Google Scholar 

  9. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  10. Brown JM, Wilson WR (2004) Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  11. Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KS, Chapman JD, Eckelman WC, Fyles AW, Giaccia AJ, Hill RP, Koch CJ, Krishna MC, Krohn KA, Lewis JS, Mason RP, Melillo G, Padhani AR, Powis G, Rajendran JG, Reba R, Robinson SP, Semenza GL, Swartz HM, Vaupel P, Yang D, Croft B, Hoffman J, Liu G, Stone H, Sullivan D (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757

    Article  PubMed  CAS  Google Scholar 

  12. Stratford IJ, Workman P (1998) Bioreductive drugs into the next millennium. Anticancer Drug Des 13:519–528

    PubMed  CAS  Google Scholar 

  13. Denny WA (2001) Prodrug strategies in cancer therapy. Eur J Med Chem 36:577–595

    Article  PubMed  CAS  Google Scholar 

  14. Wardman P (2001) Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr Med Chem 8:739–761

    PubMed  CAS  Google Scholar 

  15. McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427–442

    Article  CAS  Google Scholar 

  16. Chen Y, Hu L (2009) Design of anticancer prodrugs for reductive activation. Med Res Rev 29:29–64

    Article  PubMed  Google Scholar 

  17. Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR (2010) A phase I pharmacokinetic trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65:791–801

    Article  PubMed  CAS  Google Scholar 

  18. Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K, Pullen SM, Syddall SP, Atwell GJ, Yang S, Denny WA, Wilson WR (2007) Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA crosslinking agent PR-104. Clin Cancer Res 13:3922–3932

    Article  PubMed  CAS  Google Scholar 

  19. Singleton RS, Guise CP, Ferry DM, Pullen SM, Dorie MJ, Brown JM, Patterson AV, Wilson WR (2009) DNA crosslinks in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism and cytotoxicity. Cancer Res 69:3884–3891

    Article  PubMed  CAS  Google Scholar 

  20. Guise CP, Wang A, Thiel A, Bridewell D, Wilson WR, Patterson AV (2007) Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: a role for NADPH:cytochrome P450 oxidoreductase under hypoxia. Biochem Pharmacol 74:810–820

    Article  PubMed  CAS  Google Scholar 

  21. Guise CP, Abbattista M, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P, Doñate F, Wilson WR, Patterson AV (2010) The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res 70:1573–1584

    Article  PubMed  CAS  Google Scholar 

  22. Hicks KO, Myint H, Patterson AV, Pruijn FB, Siim BG, Patel K, Wilson WR (2007) Oxygen dependence and extravascular transport of hypoxia-activated prodrugs: comparison of the dinitrobenzamide mustard PR-104A and tirapazamine. Int J Radiat Oncol Biol Phys 69:560–571

    Article  PubMed  CAS  Google Scholar 

  23. Wilson WR, Hicks KO, Pullen SM, Ferry DM, Helsby NA, Patterson AV (2007) Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with dinitrobenzamide mustards. Radiat Res 167:625–636

    Article  PubMed  CAS  Google Scholar 

  24. Liu SC, Ahn GO, Kioi M, Dorie MJ, Patterson AV, Brown JM (2008) Optimised Clostridium-directed enzyme prodrug therapy improves the antitumor activity of the novel DNA crosslinking agent PR-104. Cancer Res 68:7995–8003

    Article  PubMed  CAS  Google Scholar 

  25. Patel K, Lewiston D, Gu Y, Hicks KO, Wilson WR (2007) Analysis of the hypoxia-activated dinitrobenzamide mustard phosphate prodrug PR-104 and its alcohol metabolite PR-104A in plasma and tissues by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 856:302–311

    Article  PubMed  CAS  Google Scholar 

  26. Gu Y, Wilson WR (2009) Rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry analysis of the novel anticancer agent PR-104 and its major metabolites in human plasma: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 877:3181–3186

    Article  PubMed  CAS  Google Scholar 

  27. Jameson MB, McKeage MJ, Ramanathan RK, Rajendran J, Gu Y, Wilson WR, Melink TJ, Tchekmedyian NS (2010) Final results of a phase Ib trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, in combination with gemcitabine or docetaxel in patients with advanced solid tumors. ASCO Meeting Abstracts (Abstract 2554)

  28. Anderson BJ, Holford NHG (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Ann Rev Pharmacol Toxicol 48:303–332

    Article  CAS  Google Scholar 

  29. Denny WA, Atwell GJ, Yang S, Wilson WR, Patterson AV, Helsby NA (2005) Novel nitrophenyl mustard and nitrophenylaziridine alcohols and their corresponding phosphates and their use as targeted cytotoxic agents. PCT WO2005042471A1

  30. Holford NHG (1996) A size standard for pharmacokinetics. Clin Pharmacokinet 30:329–332

    Article  PubMed  CAS  Google Scholar 

  31. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 279:122–126

    Article  Google Scholar 

  32. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  PubMed  CAS  Google Scholar 

  33. Anderson BJ, Woollard GA, Holford NHG (2000) A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol 502:125–134

    Article  Google Scholar 

  34. Kolokotrones T, Savage V, Deeds EJ, Fontana W (2010) Curvature in metabolic scaling. Nature 464:753–756

    Article  PubMed  CAS  Google Scholar 

  35. Gu Y, Atwell GJ, Wilson WR (2010) Metabolism and excretion of the novel bioreductive prodrug PR-104 in mice, rats, dogs and humans. Drug Metab Dispos 38:498–508

    Article  PubMed  CAS  Google Scholar 

  36. Gu Y, Guise CP, Patel K, Abbattista MR, Lie J, Sun X, Atwell GJ, Boyd M, Patterson AV, Wilson WR (2010) Reductive metabolism of the dinitrobenzamide mustard anticancer prodrug PR-104 in mice. Cancer Chemother Pharmacol. doi:10.1007/s00280-010-1354-5

    Google Scholar 

  37. Velica P, Davies NJ, Rocha PP, Schrewe H, Ride JP, Bunce CM (2009) Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers. Mol Cancer 8:121–132

    Article  PubMed  Google Scholar 

  38. Birtwistle J, Hayden RE, Khanim FL, Green RM, Pearce C, Davies NJ, Wake N, Schrewe H, Ride JP, Chipman JK, Bunce CM (2009) The aldo-keto reductase AKR1C3 contributes to 7, 12-dimethylbenz(a)anthracene-3, 4-dihydrodiol mediated oxidative DNA damage in myeloid cells: implications for leukemogenesis. Mutat Res 662:67–74

    PubMed  CAS  Google Scholar 

  39. Peterson JK, Houghton PJ (2004) Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 40:837–844

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Proacta Inc. for provision of PR-104 and access to pharmacokinetic and toxicity data for rats, dogs and humans, and MicroConstants Inc. for assay of PR-104 and PR-104A in plasma from these species. The study was supported by grant 08/103 from the Health Research Council of New Zealand and a Fellowship to KP from the Auckland Medical Research Foundation.

William R. Wilson is a founding scientist, stockholder and consultant to Proacta, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Wilson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, K., Choy, S.S.F., Hicks, K.O. et al. A combined pharmacokinetic model for the hypoxia-targeted prodrug PR-104A in humans, dogs, rats and mice predicts species differences in clearance and toxicity. Cancer Chemother Pharmacol 67, 1145–1155 (2011). https://doi.org/10.1007/s00280-010-1412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1412-z

Keywords

Navigation