Skip to main content

Advertisement

Log in

A novel bis-indole destabilizes microtubules and displays potent in vitro and in vivo antitumor activity in prostate cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Microtubules are one of the most useful subcellular targets in chemotherapy. We identified a novel indole, (3-(1H-indol-2-yl)phenyl)(1H-indol-2-yl)methanone (15), that inhibits tubulin action and exhibits potent antitumor activity in various preclinical models.

Methods

In vitro cancer cell growth inhibition was measured by SRB or MTT assay in human cancer cell lines. Apoptosis induced by 15 was examined in LNCaP and PC-3 cells. Effects of 15 on cell cycle distribution and tubulin were investigated via in vitro models. In vivo toxicity and xenograft efficacy studies were conducted in mice.

Results

Indole 15 inhibited the in vitro growth of a number of human cancer cell lines, including drug-resistant cell lines that over-express P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance protein with IC50 values in the range of 34–162 nM. Nanomolar concentrations of the compound caused down-regulation of bcl-2, induced PARP cleavage, and induced apoptosis in both LNCaP and PC-3 prostate cancer cells, as confirmed by anti-histone ELISA and DNA laddering. In vitro studies revealed that the compound inhibited polymerization of purified tubulin and induced a strong and concentration-dependent G2M arrest in PC-3 cells. In vivo studies in immunodeficient mice bearing PC-3 tumor xenografts showed that the compound effectively inhibited tumor growth.

Conclusions

The potent in vitro and in vivo antitumor activities of this novel indole suggest that drugs with this novel chemical scaffold might be developed for treatment of drug-resistant prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MRP:

Multidrug resistance-associated proteins

BCRP:

Breast cancer resistance protein

MDR:

Multidrug resistance

ABC:

ATP-binding cassette

SRB:

Sulforhodamine B

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

FACS:

Fluorescence-activated cell sorting

MTD:

Maximally tolerated dose

T/C:

Treated over control tumor volume ratio × 100%

References

  1. Dumontet C, Sikic BI (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 17:1061–1070

    CAS  PubMed  Google Scholar 

  2. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Theodore C, James ND, Turesson I et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    Article  CAS  PubMed  Google Scholar 

  3. Malik B, Stillman M (2008) Chemotherapy-induced peripheral neuropathy. Curr Neurol Neurosci Rep 8:56–65

    Article  CAS  PubMed  Google Scholar 

  4. Hamel E (1992) Natural products which interact with tubulin in the vinca domain maytansine, rhizoxin, phomopsin A, dolastatins 10 and 15 and halichondrin B. Pharmacol Ther 55:31–51

    Article  CAS  PubMed  Google Scholar 

  5. Verrills NM, Kavallaris M (2005) Improving the targeting of tubulin-binding agents: lessons from drug resistance studies. Curr Pharm Des 11:1719–1733

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez C, Mendoza P, Contreras HR, Vergara J, McCubrey JA, Huidobro C, Castellon EA (2009) Expression of multidrug resistance proteins in prostate cancer is related with cell sensitivity to chemotherapeutic drugs. Prostate 69:1448–1459

    Article  CAS  PubMed  Google Scholar 

  7. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8:411–424

    Article  CAS  PubMed  Google Scholar 

  8. Chou TC, O’Connor OA, Tong WP, Guan Y, Zhang ZG, Stachel SJ, Lee C, Danishefsky SJ (2001) The synthesis, discovery, and development of a highly promising class of microtubule stabilization agents: curative effects of desoxyepothilones B and F against human tumor xenografts in nude mice. Proc Natl Acad Sci USA 98:8113–8118

    Article  CAS  PubMed  Google Scholar 

  9. Lin B, Catley L, LeBlanc R, Mitsiades C, Burger R, Tai YT, Podar K, Wartmann M, Chauhan D, Griffin JD, Anderson KC (2005) Patupilone (epothilone B) inhibits growth and survival of multiple myeloma cells in vitro and in vivo. Blood 105:350–357

    Article  CAS  PubMed  Google Scholar 

  10. Lee FY, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550 a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7:1429–1437

    CAS  PubMed  Google Scholar 

  11. Beckers T, Reissmann T, Schmidt M, Burger AM, Fiebig HH, Vanhoefer U, Pongratz H, Hufsky H, Hockemeyer J, Frieser M, Mahboobi S (2002) 2-aroylindoles, a novel class of potent, orally active small molecule tubulin inhibitors. Cancer Res 62:3113–3119

    CAS  PubMed  Google Scholar 

  12. Chou TC, Zhang XG, Harris CR, Kuduk SD, Balog A, Savin KA, Bertino JR, Danishefsky SJ (1998) Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc Natl Acad Sci USA 95:15798–15802

    Article  CAS  PubMed  Google Scholar 

  13. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272:17118–17125

    Article  CAS  PubMed  Google Scholar 

  14. Letourneau IJ, Slot AJ, Deeley RG, Cole SP (2007) Mutational analysis of a highly conserved proline residue in MRP1, MRP2, and MRP3 reveals a partially conserved function. Drug Metab Dispos 35:1372–1379

    Article  CAS  PubMed  Google Scholar 

  15. Tsuruo T, Iida-Saito H, Kawabata H, Oh-hara T, Hamada H, Utakoji T (1986) Characteristics of resistance to adriamycin in human myelogenous leukemia K562 resistant to adriamycin and in isolated clones. Jpn J Cancer Res 77:682–692

    CAS  PubMed  Google Scholar 

  16. Fang L, Zhang G, Li C, Zheng X, Zhu L, Xiao JJ, Szakacs G, Nadas J, Chan KK, Wang PG, Sun D (2006) Discovery of a daunorubicin analogue that exhibits potent antitumor activity and overcomes P-gp-mediated drug resistance. J Med Chem 49:932–941

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    CAS  PubMed  Google Scholar 

  18. Robey RW, Honjo Y, Morisaki K, Nadjem TA, Runge S, Risbood M, Poruchynsky MS, Bates SE (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89:1971–1978

    Article  CAS  PubMed  Google Scholar 

  19. Bacher G, Nickel B, Emig P, Vanhoefer U, Seeber S, Shandra A, Klenner T, Beckers T (2001) D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res 61:392–399

    CAS  PubMed  Google Scholar 

  20. Dethlefsen LA, Prewitt JM, Mendelsohn ML (1968) Analysis of tumor growth curves. J Natl Cancer Inst 40:389–405

    CAS  PubMed  Google Scholar 

  21. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  CAS  PubMed  Google Scholar 

  22. Fares FA, Ge X, Yannai S, Rennert G (1998) Dietary indole derivatives induce apoptosis in human breast cancer cells. Adv Exp Med Biol 451:153–157

    CAS  PubMed  Google Scholar 

  23. Ge X, Fares FA, Yannai S (1999) Induction of apoptosis in MCF-7 cells by indole-3-carbinol is independent of p53 and bax. Anticancer Res 19:3199–3203

    CAS  PubMed  Google Scholar 

  24. Mahboobi S, Sellmer A, Eichhorn E, Beckers T, Fiebig HH, Kelter G (2005) Synthesis and cytotoxic activity of 2-acyl-1H-indole-4,7-diones on human cancer cell lines. Eur J Med Chem 40:85–92

    Article  CAS  PubMed  Google Scholar 

  25. Kuo CC, Hsieh HP, Pan WY, Chen CP, Liou JP, Lee SJ, Chang YL, Chen LT, Chen CT, Chang JY (2004) BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res 64:4621–4628

    Article  CAS  PubMed  Google Scholar 

  26. Liou JP, Wu CY, Hsieh HP, Chang CY, Chen CM, Kuo CC, Chang JY (2007) 4- and 5-aroylindoles as novel classes of potent antitubulin agents. J Med Chem 50:4548–4552

    Article  CAS  PubMed  Google Scholar 

  27. Liou JP, Wu ZY, Kuo CC, Chang CY, Lu PY, Chen CM, Hsieh HP, Chang JY (2008) Discovery of 4-amino and 4-hydroxy-1-aroylindoles as potent tubulin polymerization inhibitors. J Med Chem 51:4351–4355

    Article  CAS  PubMed  Google Scholar 

  28. Usui T, Kondoh M, Cui CB, Mayumi T, Osada H (1998) Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 333(Pt 3):543–548

    CAS  PubMed  Google Scholar 

  29. Mahboobi S, Pongratz H, Hufsky H, Hockemeyer J, Frieser M, Lyssenko A, Paper DH, Burgermeister J, Bohmer FD, Fiebig HH et al (2001) Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J Med Chem 44:4535–4553

    Article  CAS  PubMed  Google Scholar 

  30. Haldar S, Basu A, Croce CM (1997) Bcl2 is the guardian of microtubule integrity. Cancer Res 57:229–233

    CAS  PubMed  Google Scholar 

  31. Kraus LA, Samuel SK, Schmid SM, Dykes DJ, Waud WR, Bissery MC (2003) The mechanism of action of docetaxel (Taxotere) in xenograft models is not limited to bcl-2 phosphorylation. Invest New Drugs 21:259–268

    Article  CAS  PubMed  Google Scholar 

  32. Morris PG, Fornier MN (2008) Microtubule active agents: beyond the taxane frontier. Clin Cancer Res 14:7167–7172

    Article  CAS  PubMed  Google Scholar 

  33. Peterson JK, Tucker C, Favours E, Cheshire PJ, Creech J, Billups CA, Smykla R, Lee FY, Houghton PJ (2005) In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 11:6950–6958

    Article  CAS  PubMed  Google Scholar 

  34. Le HT, Schaldach CM, Firestone GL, Bjeldanes LF (2003) Plant-derived 3,3′-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem 278:21136–21145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by grant #PC060380 from the Department of Defense Prostate Cancer Research Program of the US Army Medical Research and Materiel Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Dalton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 82.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, S., Hwang, D.J., Barrett, C.M. et al. A novel bis-indole destabilizes microtubules and displays potent in vitro and in vivo antitumor activity in prostate cancer. Cancer Chemother Pharmacol 67, 293–304 (2011). https://doi.org/10.1007/s00280-010-1319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1319-8

Keywords

Navigation