Skip to main content
Log in

Chemoprotection and enhancement of cancer chemotherapeutic efficacy of cyclophosphamide in mice bearing Ehrlich ascites carcinoma by diphenylmethyl selenocyanate

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Chemoprotective effect of diphenylmethyl selenocyanate against cyclophosphamide (CP) induced cellular toxicity and antitumor efficacy was evaluated in mice bearing Ehrlich ascites carcinoma.

Methods

Diphenylmethyl selenocyanate (3 mg/kg.b.w.) was administered orally and CP was given intraperitoneally (25 mg/kg.b.w). The effects were observed on the level of lipid peroxidation, antioxidant enzymes status, serum transaminase (ALT, AST) activity, hematological profile, transplantable murine tumor growth, apoptosis induction in tumor cells, and life span of tumor bearing hosts.

Results

The selenium compound restored the levels of antioxidant enzymes system, decreased the level of lipid peroxidation and serum transaminase activity. Hematological profile reverted to near normal level after selenium compound treatment. Treatment with the selenium compound also resulted in significant tumor growth regression along with significant upregulation of apoptosis, increased in mean survival time and life span of tumor bearing host.

Conclusions

Results clearly indicate that diphenylmethyl selenocyanate has the potential to reduce the cellular toxicity of CP at the same time improving its antitumor efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weijl NI, Cleton FJ, Osanto S (1997) Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev 23:209–240

    Article  PubMed  CAS  Google Scholar 

  2. Moore MJ (1991) Clinical pharmacokinetics of cyclophosphamide. Clin pharmacokin 20:194–208

    Article  CAS  Google Scholar 

  3. Sulkowska M, Sulkowski S, Skrzydlewska E, Farbiszewski R (1998) Cyclophosphamide-induced generation of reactive oxygen species. Comparison with morphological changes in type II alveolar epithelial cells and lung capillaries. Exp Toxicol Pathol 50:209–220

    PubMed  CAS  Google Scholar 

  4. Berrigan MJ, Struck RF, Gurtoo HL (1987) Lipid peroxidation induced by cyclophosphamide. Cancer Biochem Biophys 9:265–270

    PubMed  CAS  Google Scholar 

  5. Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH, Cleton FJ, Osanto S (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomized, double-blind, placebo-controlled study. Eur J Cancer 40:1713–1723

    Article  PubMed  CAS  Google Scholar 

  6. Burk RF (2002) Selenium, an antioxidant nutrient. Nutr Clin Care 5:75–79

    Article  PubMed  Google Scholar 

  7. Darodo RD, Porta EA, Aquino TM (1985) Effects of dietary selenium on hepatic and renal tumorogenesis induced in rat by diethylnitrosamine. Hepatol 5:1201–1208

    Article  Google Scholar 

  8. Milner JA (1985) Effect of selenium on virally induced and transplantable tumor models. Fed Proc 44:2568–2572

    PubMed  CAS  Google Scholar 

  9. IpC (1998) Lessons from basic research in selenium and cancer prevention. J Nutr 128:1845–1854

    Google Scholar 

  10. Narajji C, Karvekar MD, Das AK (2007) Biological importance of organoselenium compounds. Indian J Pharm Sci 69:344–351

    Article  CAS  Google Scholar 

  11. Das RK, Ghosh S, Sengupta A, Das S, Bhattacharya S (2004) Inhibition of DMBA/croton oil-induced two-stage mouse skin carcinogenesis by diphenylmethyl selenocyanate. Eur J Cancer Prev 13:411–417

    Article  PubMed  CAS  Google Scholar 

  12. Das RK, Sk HU, Bhattacharya S (2005) Diphenylmethyl selenocyanate inhibits DMBA-croton oil induced two-stage mouse skin carcinogenesis by inducing apoptosis and inhibiting cutaneous cell proliferation. Cancer Lett 23:90–101

    Article  CAS  Google Scholar 

  13. Pederson CTh (1963) Preparation of some 4-substituted selenosemicarbazides. Acta Chem Scand 17:1459–1461

    Article  Google Scholar 

  14. Okhawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thioberbituric acid reaction. Annal Biochem 95:351–358

    Article  Google Scholar 

  15. Sedlack J, Lindsay RN (1968) Estimation of total protein bound and non-protein sulphydryl groups in tissue with ellman reagent. Anal Biochem 25:192–205

    Article  Google Scholar 

  16. Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione-S-transferase, the first enzymatic step in marcapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  17. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  18. Luck H (1963) A spectrophotometric method for estimation of catalase. In: Bergmeyer HV (ed) Methods of enzymatic analysis. Acad Press, New York, pp 886–888

    Google Scholar 

  19. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Europ J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  20. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemoprotein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  21. Sahli H (1909) Klinische Untersuchungsmethoden. Leipsic and Vienna, 5th edn. pp 845

  22. D’Armour FE, Blood FR, Belden DA (1965) The manual for laboratory work in mammalian physiology, 3rd edn. The University of Chicago Press, Chicago, pp 4–6

    Google Scholar 

  23. Wintrobe MM, Lee GR, Boggs DR, Bithel TC, Athens JW, Foerester J (1961) Clinical hematology, 5th edn. Lea and Febiger, Philadelphia, p 326

    Google Scholar 

  24. Dacie JV, Lewis SM (1958) Practical hematology. 2nd edn., J and A, Churchill Ltd, London, pp 38–48

  25. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folinphenol reagent. J Biol Chem 193:265–276

    PubMed  CAS  Google Scholar 

  26. Mazumder UK, Gupta M, Maiti S, Mukherjee M (1997) Antitumor activity of Hygrophilaspinosa on Ehrlich ascites carcinoma and sarcoma-180 induced mice. Indian J Exp Biol 35:473–477

    Google Scholar 

  27. Gupta M, Mazumder UK, Rath N, Mukhopadhyay DK (2000) Antitumor activity of ethanolic extract of Cassia fistula L. seed against Ehrlich ascites carcinoma. J Ethnopharmacol 72:151–156

    Article  PubMed  CAS  Google Scholar 

  28. Caderni G, DeFilippo C, Luceri C, Salvadori M, Giannini A, Biggeri A, Remy S, Cheynier V, Dolara P (2000) Effects of black tea, green tea and wine extracts on intestinal carcinogenesis induced by azoxymethane in F344 rats. Carcinogenesis 21:1965–1969

    Article  PubMed  CAS  Google Scholar 

  29. Wessner B, Strasser EM, Koitz N, Schmuckenschlager C, Unger-Manhart N, Roth E (2007) Green tea polyphenol administration partly ameliorates chemotherapy-induced side effects in the small intestine of mice. J Nutr 137:634–640

    PubMed  CAS  Google Scholar 

  30. Shen CL, Song W, Pence BC (2001) Interactions of selenium compounds with other antioxidants in DNA damage and apoptosis in human normal keratinocytes. Cancer Epidemiol Biomarkers Prev 10:385–390

    PubMed  CAS  Google Scholar 

  31. Conklin KA (2004) Cancer chemotherapy and antioxidants. J Nutr 134:3201S–3204S

    PubMed  CAS  Google Scholar 

  32. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    PubMed  CAS  Google Scholar 

  33. Burlakova EB, Molochkina EM (1973) Change in the antioxidative activity of mouse liver lipids during experimental carcinogenesis. Biofizika 18:293–298

    PubMed  CAS  Google Scholar 

  34. Yagi K (1991) Lipid peroxides and human diseases. Chem Physiol Lip 45:337–351

    Article  Google Scholar 

  35. Hohorst HJ, Draeger U, Peter G, Voelcker G (1976) The problem of oncostatic specificity of cyclophosphamide (NSC-26271): studies on reactions that control the alkylating and cytotoxic activity. Cancer Treat Rep 60:309–315

    PubMed  CAS  Google Scholar 

  36. Anderson D, Bishop JB, Garner RC, Ostrosky-Wegman P, Selby PB (1995) Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. Mutat Res 330:115–181

    PubMed  CAS  Google Scholar 

  37. Dirven HA, van Ommen B, van Bladeren PJ (1994) Involvement of human glutathione-S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res 54:6215–6220

    PubMed  CAS  Google Scholar 

  38. Hogland HC (1982) Hematological complications of cancer chemotherapy. Semin Oncol 9:95–102

    Google Scholar 

  39. Honjo I, Suou T, Hirayama C (1988) Hepatotoxicity of cyclophosphamide in man: pharmacokinetic analysis. Res Commun Chem Pathol Pharmacol 61:149–165

    PubMed  CAS  Google Scholar 

  40. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300

    Article  PubMed  CAS  Google Scholar 

  41. Ambrosone CB, Ahn J, Schoenenberger V (2005) Antioxidant supplements, genetics and chemotherapy outcomes. Curr Cancer Ther Rev 1:251–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Dr. Jaydip Biswas, Director, Chittaranjan National Cancer Institute, India for support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudin Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, P., Sk, U.H. & Bhattacharya, S. Chemoprotection and enhancement of cancer chemotherapeutic efficacy of cyclophosphamide in mice bearing Ehrlich ascites carcinoma by diphenylmethyl selenocyanate. Cancer Chemother Pharmacol 64, 971–980 (2009). https://doi.org/10.1007/s00280-009-0950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0950-8

Keywords

Navigation