Skip to main content

Advertisement

Log in

SNS-032 is a potent and selective CDK 2, 7 and 9 inhibitor that drives target modulation in patient samples

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

SNS-032 (formerly BMS-387032) is a potent, selective inhibitor of cyclin-dependent kinases (CDK) 2, 7 and 9, currently in phase 1 clinical trial for chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). We used the MM cell line RPMI-8226 to evaluate the relationship between duration of SNS-032 exposure, target modulation of CDKs 2, 7 and 9, and induction of apoptosis. We also assessed target modulation in patient peripheral blood mononuclear cells (PBMCs) from phase 1 solid tumor patients treated with SNS-032.

Methods

Proliferation and colony forming assays were used to evaluate cytotoxicity, Western blot analyses to evaluate target modulation, FACS analysis to assess cell cycle distribution, RT-PCR to evaluate transcriptional inhibition.

Results

SNS-032 blocks the cell cycle via inhibition of CDKs 2 and 7, and transcription via inhibition of CDKs 7 and 9. Treatment of RPMI-8226 MM cells at 300 nM (IC90) for 6 h was sufficient for commitment to apoptosis. This correlated with inhibition of CDKs 2, 7 and 9, as reflected in substrate signaling molecules. SNS-032 activity was unaffected by human serum. Target modulation was observed in PBMC from treated patients.

Conclusions

These results demonstrate SNS-032 target modulation of CDKs 2, 7 and 9, and establish 6 h exposure as sufficient to commit RPMI-8226 MM cells to apoptosis. Combined with the demonstration of target modulation in PBMC from phase 1 solid tumor patients treated with SNS-032, these data support the ongoing clinical study of SNS-032 in MM and CLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Senderowicz AM, Sausville EA (2000) Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 92:376–387

    Article  PubMed  CAS  Google Scholar 

  2. Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770–1783

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421

    Article  PubMed  CAS  Google Scholar 

  4. Sharma SV, Fischbach MA, Haber DA, Settleman J (2006) “Oncogenic shock”: explaining oncogene addiction through differential signal attenuation. Clin Cancer Res 12:4392–4395

    Article  Google Scholar 

  5. Wickremasinghe RG, Hoffbrand AV (1999) Biochemical and genetic control of apoptosis: relevance to normal hematopoiesis and hematological malignancies. Blood 93:3587–3600

    PubMed  CAS  Google Scholar 

  6. Belinda C, Baliga SK (2002) Role of Bcl-2 family of proteins in malignancy. Hematol Oncol 20:63–74

    Article  Google Scholar 

  7. Wuilleme-Toumi S, Robillard N, Gomez P et al (2005) Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia 19:1248–1252

    Article  PubMed  CAS  Google Scholar 

  8. MacCallum DE, Melville J, Frame S et al (2005) Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of rna polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res 65:5399–5407

    Article  PubMed  CAS  Google Scholar 

  9. Derenne S, Monia B, Dean NM et al (2002) Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-xL is an essential survival protein of human myeloma cells. Blood 100:194–199

    Article  PubMed  CAS  Google Scholar 

  10. Nurse P (2002) Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep 22:487–499

    Article  PubMed  CAS  Google Scholar 

  11. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Ann Rev Cell Develop Biol 13:261–291

    Article  CAS  Google Scholar 

  12. Mailand N, Diffley J (2005) CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122:915–926

    Article  PubMed  CAS  Google Scholar 

  13. Harper JW, Elledge SJ (1998) The role of Cdk7 in CAK function, a retro-retrospective. Genes Dev 12:285–289

    Article  PubMed  CAS  Google Scholar 

  14. Kaldis P, Russo AA, Chou HS, Pavletich NP, Solomon MJ (1998) Human and yeast Cdk-activating kinases (CAKs) display distinct substrate specificities. Mol Biol Cell 9:2545–2560

    PubMed  CAS  Google Scholar 

  15. Fesquet D, Morin N, Doree M, Devault A (1997) Is Cdk7/cyclin H/MAT1 the genuine cdk activating kinase in cycling Xenopus egg extracts? Oncogene 15:1303–1307

    Article  PubMed  CAS  Google Scholar 

  16. Akoulitchev S, Makela T, Weinberg R, Reinberg D (1995) Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature 377:557–560

    Article  PubMed  CAS  Google Scholar 

  17. Busso D, Keriel A, Sandrock B et al (2000) Distinct regions of MAT1 regulate cdk7 kinase and TFIIH transcription activities. J Biol Chem 275:22815–22823

    Article  PubMed  CAS  Google Scholar 

  18. Hirose Y, Ohkuma Y (2007) Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem Tokyo 141:601–608

    PubMed  CAS  Google Scholar 

  19. Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77–137

    Article  PubMed  CAS  Google Scholar 

  20. Misra RN, H-y Xiao, Kim KS et al (2004) N-(Cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-Dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. J Med Chem 47:1719–1728

    Article  PubMed  CAS  Google Scholar 

  21. Podar K, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105:1383–1395

    Article  PubMed  CAS  Google Scholar 

  22. Yasui H, Hideshima T, Richardson P, Anderson K (2006) Recent advances in the treatment of multiple myeloma. Curr Pharm Biotechnol 7:381–393

    Article  PubMed  CAS  Google Scholar 

  23. Frassanito MA, Cusmai A, Iodice G, Dammacco F (2001) Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 97:483–489

    Article  PubMed  CAS  Google Scholar 

  24. Chao S-H, Fujinaga K, Marion JE et al (2000) Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275:28345–28348

    Article  PubMed  CAS  Google Scholar 

  25. Bach S, Knockaert M, Reinhardt J et al (2005) Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 280:31208–31219

    Article  PubMed  CAS  Google Scholar 

  26. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ (1996) Flavopiridol Induces G1 Arrest with Inhibition of Cyclin-dependent Kinase (CDK) 2 and CDK4 in Human Breast Carcinoma Cells. Cancer Res 56:2973–2978

    PubMed  CAS  Google Scholar 

  27. Losiewicz M, Carlson B, Kaur G, Sausville E, Worland P (1994) Potent inhibition of CDC2 kinase activity by the flavonoid L86–8275. Biochem Biophys Res Commun 201:589–595

    Article  PubMed  CAS  Google Scholar 

  28. McClue S, Blake D, Clarke R et al (2002) In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 102:463–468

    Article  PubMed  CAS  Google Scholar 

  29. Squires MS, Feltell RE, Lock V et al (2007) AT7519, a potent CDK inhibitor, is active in leukemia models and primary CLL patient samples. ASH Annual Meeting Abstracts 110:3127

    Google Scholar 

  30. Chen R, Keating MJ, Gandhi V, Plunkett W (2005) Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 106:2513–2519

    Article  PubMed  CAS  Google Scholar 

  31. Merino R, Ding L, Veis D, Korsmeyer S, Nunez G (1994) Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO J 13:683–691

    PubMed  CAS  Google Scholar 

  32. Byrd JC, Lin TS, Dalton JT et al (2007) Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 109:399–404

    Article  PubMed  CAS  Google Scholar 

  33. Bible KC, Lensing JL, Nelson SA et al (2005) Phase 1 trial of flavopiridol combined with cisplatin or carboplatin in patients with advanced malignancies with the assessment of pharmacokinetic and pharmacodynamic end points. Clin Cancer Res 11:5935–5941

    Article  PubMed  CAS  Google Scholar 

  34. Chen R, Wierda WG, Benaissa S et al (2007) Mechanism of Action of SNS–032, a Novel Cyclin Dependent Kinase Inhibitor, in Chronic Lymphocytic Leukemia: Comparison with Flavopiridol. ASH Annual Meeting Abstracts 110:3112

    Google Scholar 

  35. Heath E, Bible K, Martell R, Adelman D, Lorusso P (2008) A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Invest New Drugs 26:59–65

    Article  PubMed  CAS  Google Scholar 

  36. Hawtin RE, Cohen R, Haas N et al (2007) In: 12th congress of the European Hematology Association Vienna, Austria, June 7–10, 2007. Haematologica, p 276

  37. Goldberg Z, Wierda W, Chen R et al (2008) In: 13th congress of the European Hematology Association Copenhagen, Denmark, June 12–15, 2008. Haematologica, p 327

  38. Bergsagel P (2007) Individualizing therapy using molecular markers in multiple myeloma. Clin Lymphoma Myeloma 7(Suppl 4):S170–S174

    Article  PubMed  CAS  Google Scholar 

  39. Zhan F, Huang Y, Colla S et al (2006) The molecular classification of multiple myeloma. Blood 108:2020–2028

    Article  PubMed  CAS  Google Scholar 

  40. Ali M, Choy H, Habib A, Saha D (2007) SNS-032 prevents tumor cell-induced angiogenesis by inhibiting vascular endothelial growth factor. Neoplasia 9:370–381

    Article  PubMed  CAS  Google Scholar 

  41. Bergsagel PL, Kuehl WM, Zhan F et al (2005) Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106:296–303

    Article  PubMed  CAS  Google Scholar 

  42. Trudel S, Sebag M, Li ZH et al (2008) SNS-032, a potent and selective CDK2, 7 and 9 inhibitor, demonstrates preclinical activity in human multiple myeloma. AACR Meeting Abstracts 2008, p 4972

  43. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352:804–815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Samer Nuwayhid and Tai Wong for technical support. Bob McDowell for help with manuscript preparation. Patients who donated blood samples for correlative study analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael Elizabeth Hawtin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conroy, A., Stockett, D.E., Walker, D. et al. SNS-032 is a potent and selective CDK 2, 7 and 9 inhibitor that drives target modulation in patient samples. Cancer Chemother Pharmacol 64, 723–732 (2009). https://doi.org/10.1007/s00280-008-0921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0921-5

Keywords

Navigation