Skip to main content

Advertisement

Log in

Enhanced absorption and tissue distribution of paclitaxel following oral administration of DHP 107, a novel mucoadhesive lipid dosage form

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 28 February 2009

Abstract

Purpose

This study was conducted to examine the absorption and tissue distribution characteristics of paclitaxel-loaded DHP 107, a Cremophor EL-free, mucoadhesive lipid oral dosage form.

Methods

DHP 107 was orally administered to mice at 10, 20 and 40 mg/kg doses. For comparison purposes, Taxol was i.v. injected at 5, 10 and 20 mg/kg doses. Drug levels were determined in plasma and tissues by validated HPLC assays. The absolute bioavailability and the relative distribution to various tissues were calculated as a function of dose.

Results

The dose-normalized plasma AUCDHP 107/AUCTaxol ratios calculated at comparable AUC values ranged from 14.6 to 29.0%. In contrast, relative tissue distribution ratios calculated as the dose-normalized AUCDHP 107/AUCTaxol were as high as 342.0, 139.0, 112.9 and 108.2% for stomach, small intestine, large intestine and ovary, respectively.

Conclusions

Oral administration of DHP 107 provided a substantial systemic absorption of paclitaxel. Furthermore, the relative distribution ratios of DHP 107 at doses of 20 and 40 mg/kg were higher for stomach, small intestine, large intestine, and ovary than the systemic bioavailability, providing a basis for therapeutic advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Holmes FA, Walters RS, Theriault RL, Forman AD, Newton LK, Raber MN, Buzdar AU, Frye DK, Hortobagyi GN (1991) Phase II trial of Taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst 83:1797–1805

    Article  PubMed  CAS  Google Scholar 

  2. Murphy WK, Fossella FV, Winn RJ, Shin DM, Hynes HE, Gross HM, Davilla E, Leimert J, Dhingra H, Raber MN (1993) Phase II study of Taxol in patients with untreated advanced non-small-cell lung cancer. J Natl Cancer Inst 85:384–388

    Article  PubMed  CAS  Google Scholar 

  3. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565

    Article  PubMed  CAS  Google Scholar 

  4. Rowinsky EK, Cazenave LA, Donehower RC (1990) Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 82:1247–1259

    Article  PubMed  CAS  Google Scholar 

  5. Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3:755–766

    Article  PubMed  CAS  Google Scholar 

  6. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, Baker JR Jr, Van Echo DA, Von Hoff DD, Leyland-Jones B (1990) Hypersensitivity reactions from Taxol. J Clin Oncol 8:1263–1268

    PubMed  CAS  Google Scholar 

  7. Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH (1996) Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 56:2112–2115

    PubMed  CAS  Google Scholar 

  8. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  PubMed  CAS  Google Scholar 

  9. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    Article  PubMed  CAS  Google Scholar 

  10. Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, Beals B, Figg WD, Hawkins M, Desai N (2005) Comparative preclinical and clinical pharmacokinetics of a Cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 11:4136–4143

    Article  PubMed  CAS  Google Scholar 

  11. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, Park K, Lee MY, Heo DS (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18:2009–2014

    Article  PubMed  Google Scholar 

  12. Eiseman JL, Eddington ND, Leslie J, MacAuley C, Sentz DL, Zuhowski M, Kujawa JM, Young D, Egorin MJ (1994) Plasma pharmacokinetics and tissue distribution of paclitaxel in CD2F1 mice. Cancer Chemother Pharmacol 34:465–471

    PubMed  CAS  Google Scholar 

  13. Wacher VJ, Salphati L, Benet LZ (2001) Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv Drug Deliv Rev 46:89–102

    Article  PubMed  CAS  Google Scholar 

  14. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH, van Tellingen O (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 94:2031–2035

    Article  PubMed  CAS  Google Scholar 

  15. Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, Kuo MS, Hageman MJ (2003) Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci 92:2386–2398

    Article  PubMed  CAS  Google Scholar 

  16. Woo JS, Lee CH, Shim CK, Hwang SJ (2003) Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoprotein inhibitor KR30031. Pharm Res 20:24–30

    Article  PubMed  CAS  Google Scholar 

  17. Yang S, Gursoy RN, Lambert G, Benita S (2004) Enhanced oral absorption of paclitaxel in a novel self-microemulsifying drug delivery system with or without concomitant use of P-glycoprotein inhibitors. Pharm Res 21:261–270

    Article  PubMed  CAS  Google Scholar 

  18. Tiwari SB, Amiji MM (2006) Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J Nanosci Nanotechnol 6:3215–3221

    Article  PubMed  CAS  Google Scholar 

  19. Khandavilli S, Panchagnula R (2007) Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol 127:154–162

    Article  PubMed  CAS  Google Scholar 

  20. Peltier S, Oger JM, Lagarce F, Couet W, Benoît JP (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 23:1243–1250

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X, Burt HM, Von Hoff D, Dexter D, Mangold G, Degen D, Oktaba AM, Hunter WL (1997) An investigation of the antitumour activity and biodistribution of polymeric micellar paclitaxel. Cancer Chemother Pharmacol 40:81–86

    Article  PubMed  CAS  Google Scholar 

  22. Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, Ding Q, Yuan S, Shen Z, Ping Q, Zhou H (2008) Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials 29:1233–1241

    Article  PubMed  CAS  Google Scholar 

  23. Hong JW, Lee IH, Kwak YH, Park YT, Sung HC, Kwon IC, Chung H (2007) Efficacy and tissue distribution of DHP107, an oral paclitaxel formulation. Mol Cancer Ther 6:3239–3247

    Article  PubMed  CAS  Google Scholar 

  24. van Asperen J, van Tellingen O, Sparreboom A, Schinkel AH, Borst P, Nooijen WJ, Beijnen JH (1997) Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 76:1181–1183

    PubMed  Google Scholar 

  25. Bardelmeijer HA, Ouwehand M, Beijnen JH, Schellens JH, van Tellingen O (2004) Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest New Drugs 22:219–229

    Article  PubMed  CAS  Google Scholar 

  26. Varma MV, Panchagnula R (2005) Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci 25:445–453

    Article  PubMed  CAS  Google Scholar 

  27. Gianni L, Kearns CM, Giani A, Capri G, Viganó L, Lacatelli A, Bonadonna G, Egorin MJ (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    PubMed  CAS  Google Scholar 

  28. Gallo JM, Li S, Guo P, Reed K, Ma J (2003) The effect of P-glycoprotein on paclitaxel brain and brain tumor distribution in mice. Cancer Res 63:5114–5117

    PubMed  CAS  Google Scholar 

  29. Ho PY, Yeh TK, Yao HT, Lin HL, Wu HY, Lo YK, Chang YW, Chiang TH, Wu SHW, Chao YS, Chen CT (2008) Enhanced oral bioavailability of paclitaxel by D-α-tocopheryl polyethylene glycol 400 succinate in mice. Int J Pharm 359:174–181

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Dong Yoo.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00280-009-0952-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, B.S., Kim, H.J., Hong, S.H. et al. Enhanced absorption and tissue distribution of paclitaxel following oral administration of DHP 107, a novel mucoadhesive lipid dosage form. Cancer Chemother Pharmacol 64, 87–94 (2009). https://doi.org/10.1007/s00280-008-0849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0849-9

Keywords

Navigation