Skip to main content

Advertisement

Log in

Cisplatin sensitivity of oral squamous carcinoma cells is regulated by Na+,K+-ATPase activity rather than copper-transporting P-type ATPases, ATP7A and ATP7B

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cisplatin (CDDP) is one of the major chemotherapeutic drugs, but tumor cells’ acquired resistance to CDDP limits its therapeutic potentials. One of the main reasons of resistance is reduced drug accumulation. The mechanism by which tumor cells accumulate reduced CDDP is not well elucidated yet. The aim of this study was to investigate what regulates intracellular CDDP accumulation.

Methods

Six different types of oral squamous carcinoma cells were used in this study. Assessment of CDDP sensitivity was determined by measuring the ATP level of the cells. Intracellular CDDP and copper (Cu) accumulation were measured and CDDP efflux study was conducted. Assessment of Na+,K+-ATPase α and β subunits, ATP7A and ATP7B was done by western blotting. Specific activities of Na+,K+-ATPase and copper-transporting P-type ATPase (Cu2+-ATPase) were detected and a role of Na+,K+-ATPase inhibitor in intracellular CDDP accumulation was examined.

Results

Among the cells HSC-3 and BHY cells were found most CDDP-sensitive and CDDP-resistant, respectively. The most CDDP-sensitive HSC-3 cells exhibited an increased intracellular cisplatin accumulation, high Na+,K+-ATPase activity and over-expressed Na+,K+-ATPase α and β subunits, ATP7A and ATP7B, compared to the most CDDP-resistant BHY cells, but there were no such differences between the two in the CDDP efflux level or Cu2+-ATPase activity. Moreover, pretreatment with Na+,K+-ATPase inhibitor markedly reduced intracellular cisplatin accumulation.

Conclusions

Na+,K+-ATPase activity is responsible for regulating intracellular CDDP accumulation in oral squamous carcinoma cells rather than Cu2+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2451–2466

    Article  CAS  Google Scholar 

  2. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  3. Safaei R, Katano K, Samimi G, Holzer AK, Naerdemann W, Howell SB (2004) Contribution of endocytic pathways to the uptake of cisplatin in sensitive and resistant ovarian cancer cells. Proc Am Assoc Cancer Res 45:120

    Google Scholar 

  4. Katano K, Kondo A, Safaei R, Holzer AK, Samimi G, Mishima M et al (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565

    PubMed  CAS  Google Scholar 

  5. Safaei R, Katano K, Samimi G, Naerdemann W, Stevenson JL, Rochdi M et al (2004) Cross-resistance to cisplatin in cells with acquired resistance to copper. Cancer Chemother Pharmacol 53:239–246

    Article  PubMed  CAS  Google Scholar 

  6. Safaei R, Holzer AK, Katano K, Samimi G, Howell SB (2004) The role of copper transporters in the development of resistance to Pt drugs. J Inorg Biochem 98:1607–1613

    Article  PubMed  CAS  Google Scholar 

  7. Rakowski RF, Gadsby DC, De Weer P (1989) Stoichiometry and voltage dependence of the sodium pump in voltage-clamped internally dialyzed squid giant axon. J Gen Physiol 93:903–941

    Article  PubMed  CAS  Google Scholar 

  8. Robinson JD, Flashner MS (1979) The Na++K+-activated ATPase. Enzymatic and transport properties. Biochim Biophys Acta 549:145–176

    PubMed  CAS  Google Scholar 

  9. Andrews PA, Mann SC, Huynh HH, Albright KD (1991) Role of the Na+,K+-ATPase in the accumulation of cis-diammine-dichloroplatinum(II) in human ovarian carcinoma cells. Cancer Res 51:3677–3681

    PubMed  CAS  Google Scholar 

  10. Kishimoto S, Kawazoe Y, Ikeno M, Saitoh M, Nakano Y, Nishi Y et al (2006) Role of Na+,K+-ATPase α1 subunit in the intracellular accumulation of cisplatin. Cancer Chemother Pharmacol 57:84–90

    Article  PubMed  CAS  Google Scholar 

  11. Solioz M, Vulpe C (1996) CPx-type ATPase: a class of p-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    PubMed  CAS  Google Scholar 

  12. Culotta VC, Lin SJ, Schmidt P, Klomp LW, Casareno RL, Gitilin J (1999) Intercellular pathways of copper trafficking in yeast and humans. Adv Exp Med Biol 448:247–254

    PubMed  CAS  Google Scholar 

  13. Katano K, Safaei R, Samimi G, Holzer AK, Rochdi M, Howell SB (2003) The copper export pumpATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells. Mol Pharmacol 64:466–473

    Article  PubMed  CAS  Google Scholar 

  14. Samimi G, Katano K, Holzer AK, Safaei R, Howell SB (2004) Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol 66:25–32

    Article  PubMed  CAS  Google Scholar 

  15. Safaei R, Howell SB (2005) Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol 53:13–23

    Article  PubMed  Google Scholar 

  16. Jorgensen PL (1988) Purification of Na+,K+-ATPase: enzyme sources, preparative problems, and preparation from mammalian kidney. Methods Enzymol 156:29–43

    Article  PubMed  CAS  Google Scholar 

  17. Vasallo PM, Post RL (1986) Calcium ion as a probe of the monovalent cation center of sodium, potassium ATPase. J Biol Chem 261:16957–16962

    PubMed  CAS  Google Scholar 

  18. Ahmed Z, Deyama Y, Yoshimura Y, Suzuki K. Cisplatin inhibits Na+,K+-ATPase activity depending on its concentration, preincubation time and temperature. Hokkaido J Dent Sci (in press)

  19. Chifflet S, Torriglia A, Chiesa R, Tolosa S (1988) A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPase. Anal Biochem 168:1–4

    Article  PubMed  CAS  Google Scholar 

  20. Takeda K, Ushimaru M, Fukushima Y, Kawamura M (1999) Characterization of a P-type ATPase of mouse liver microsomes. J Membr Biol 170:13–16

    Article  PubMed  CAS  Google Scholar 

  21. Mellish KJ, Kelland LR, Harrap KR (1993) In vitro platinum drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin. Br J Cancer 68:240–250

    PubMed  CAS  Google Scholar 

  22. Johnson SW, Perez RP, Godwin AK, Yeung AT, Handel LM, Ozols RF et al (1994) Role of platinum-DNA adduct formation and removal in cisplatin resistance in human ovarian cancer cell lines. Biochem Pharmacol 47:689–697

    Article  PubMed  CAS  Google Scholar 

  23. Zhengdong L, Duhong B (1995) Experimental study on the mechanism of cisplatin resistance and its reversion in human ovarian cancer. Chin Med J 109:353–355

    Google Scholar 

  24. Andrews PA, Velury S, Mann SC, Howell SB (1988) Cis-diamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Res 48:68–73

    PubMed  CAS  Google Scholar 

  25. Loh SY, Mistry P, Kelland LR, Abel G, Harrap KR (1992) Reduced drug accumulation is a major mechanism of acquired resistance to cisplatin in a human ovarian cell line: circumvention studies using novel platinum(II) and (IV) ammine/amine complexes. Br J Cancer 66:1109–1115

    PubMed  CAS  Google Scholar 

  26. Zisowsky J, Koegel S, Leyers S, Devarakonda K, Kassack MU, Osmak M, Jaehde U (2007) Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochem Pharmacol 73:298–307

    Article  PubMed  CAS  Google Scholar 

  27. Paeker RJ, Eastman A, Bostick-Bruton F, Reed E (1991) Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation. J Clin Invest 87:772–777

    Article  Google Scholar 

  28. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    Article  PubMed  CAS  Google Scholar 

  29. Lee J, Maria Marjorette OP, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter CTR1. J Biol Chem 227:4380–4387

    Article  CAS  Google Scholar 

  30. Chauhan SS, Liang XJ, Su AW, Pai-Panandiker A, Shen DW, Hanover JA et al (2003) Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. Br J Cancer 88:1327–1334

    Article  PubMed  CAS  Google Scholar 

  31. Bereta GL, Gatti L, Tinelli S, Corna E, Colangelo D, Zunino F, Perego P (2004) Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and–resistant cells. Biochem Pharmacol 68:283–291

    Article  CAS  Google Scholar 

  32. Chao CC (1994) Decreased accumulation as a mechanism of resistance to cis-diamminedichloroplatinum (II) in cervix carcinoma HeLa cells: relation to DNA repair. Mol Pharmacol 45:1137–1144

    PubMed  CAS  Google Scholar 

  33. Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M et al (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin Cancer Res 10:4661–4669

    Article  PubMed  CAS  Google Scholar 

  34. Safaei R (2006) Role of copper transporters in the uptake and efflux of platinum containing drugs. Cancer Lett 234:34–39

    Article  PubMed  CAS  Google Scholar 

  35. Komatsu M, Sumizawa T, Mutoh M, Chen ZS, Terada K, Furukawa T et al (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res 60:1312–1316

    PubMed  CAS  Google Scholar 

  36. Nakayama K, Miyazaki K, Kanzaki A, Fukumoto M, Takebayashi Y (2001) Expression and cisplatin sensitivity of copper transporting P-type adenosine triphosphatase (ATP7B) in human solid carcinoma cell lines. Oncol Rep 8:1285–1287

    PubMed  CAS  Google Scholar 

  37. Owatari S, Akune S, Komatsu M, Ikeda R, Firth SD, Che X et al (2007) Copper-transporting P-Type ATPase, confers multidrug resistance and its expression is related to resistance to SN-38 in clinical colon cancer. Cancer Res 67:4860–4868

    Article  PubMed  CAS  Google Scholar 

  38. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V, Capurso G, Lattimore S, Akada M et al (2005) Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129:1454–1463

    Article  PubMed  CAS  Google Scholar 

  39. Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM, Zeng Y et al (2006) Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene 25:2328–2338

    Article  PubMed  CAS  Google Scholar 

  40. Lingrel JB, Kuntzweiler T (1994) Na+,K+-ATPase. J Biol Chem 269:19659–19662

    PubMed  CAS  Google Scholar 

  41. Rose AM, Valdes R Jr (1994) Understanding the sodium pump and its relevance to disease. Clin Chem 40:1674–1685

    PubMed  CAS  Google Scholar 

  42. Bando T, Fujimura M, Kasahara K, Matsuda T (1998) Significance of Na+,K+-ATPase on intracellular accumulation of cis-diamminedichloroplatinum(II) in human non-small-cell but not in small-cell lung cancer cell lines. Anticancer Res 18:1085–1089

    PubMed  CAS  Google Scholar 

  43. Lizuka N, Miyamoto K, Tangoku A, Hayashi H, Hazama S, Yoshino S et al (2000) Downregulation of intracellular nm23–H1 prevents cisplatin-induced DNA damage in oesophageal cancer cells: possible association with Na+,K+-ATPase. Br J Cancer 83:1209–1215

    Article  PubMed  CAS  Google Scholar 

  44. Ohmori T, Nishio K, Ohta S, Kubota N, Adachi M, Komiya K, Saijo N (1994) Ouabain-resistant non-small-cell lung-cancer cell line shows collateral sensitivity to cis-diamminedichloroplatinum(II) (CDDP). Int J Cancer 57:111–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniaki Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, Z., Deyama, Y., Yoshimura, Y. et al. Cisplatin sensitivity of oral squamous carcinoma cells is regulated by Na+,K+-ATPase activity rather than copper-transporting P-type ATPases, ATP7A and ATP7B. Cancer Chemother Pharmacol 63, 643–650 (2009). https://doi.org/10.1007/s00280-008-0781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0781-z

Keywords

Navigation