Skip to main content

Advertisement

Log in

Inhibition of mitochondrial protein translation sensitizes melanoma cells to arsenic trioxide cytotoxicity via a reactive oxygen species dependent mechanism

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Current standard chemotherapeutic regimens for malignant melanoma are unsatisfactory. Although in vitro studies of arsenic trioxide (ATO) have demonstrated promise against melanoma, recent phase II clinical trials have failed to show any significant clinical benefit when used as a single agent. To enhance the efficacy of ATO in the treatment of melanoma, we sought to identify compounds that potentiate the cytotoxic effects of ATO in melanoma cells. Through a screen of 2,000 marketed drugs and naturally occurring compounds, a variety of antibiotic inhibitors of mitochondrial protein translation were identified.

Methods

The mechanism of action for the most effective agent identified, thiostrepton, was examined in a panel of melanoma cells. Effects of combinatorial ATO and thiostrepton treatment on cytotoxicity, apoptosis, mitochondrial protein content, and reactive oxygen species (ROS) were assessed.

Results

Thiostrepton (1 μM) sensitized three out of five melanoma cell lines to ATO-mediated growth inhibition. Treatment with thiostrepton resulted in reduced levels of the mitochondrial-encoded protein cytochrome oxidase I (COX1). Exposure to thiostrepton in combination with ATO resulted in increased levels of cleaved poly (ADP-ribose) polymerase and cellular ROS. The growth inhibitory and pro-apototic effects of addition of the ATO/thiostrepton combination were reversed by the free radical scavenger N-acetyl-l-cysteine.

Conculsions

Our data suggest that thiostrepton enhances the cytotoxic effects of ATO through a ROS-dependent mechanism. Co-administration of oxidative stress-inducing drugs such as thiostrepton in order to enhance the efficacy of ATO in the treatment of melanoma warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akao Y, Nakagawa Y, Akiyama K (1999) Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett 455:59–62

    Article  PubMed  CAS  Google Scholar 

  2. Bael TE, PB, Thoreson M, Richmond T, Eyer J, Gollob JA (2005) Presented at the Journal of Clinical Oncology, 2005 ASCO annual meeting proceedings. Vol. 23, No. 16S, Part I of II (June 1 Supplement), 2005: 7553

  3. Berenson JR, Boccia R, Siegel D, Bozdech M, Bessudo A, Stadtmauer E, Talisman Pomeroy J, Steis R, Flam M, Lutzky J, Jilani S, Volk J, Wong SF, Moss R, Patel R, Ferretti D, Russell K, Louie R, Yeh HS, Swift RA (2006) Efficacy and safety of melphalan, arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma: a prospective, multicentre, phase II, single-arm study. Br J Haematol 135:174–183

    Article  PubMed  CAS  Google Scholar 

  4. Bonawitz ND, Rodeheffer MS, Shadel GS (2006) Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 26:4818–4829

    Article  PubMed  CAS  Google Scholar 

  5. Chee DO, Boddie AW, Roth JA, Holmes EC, Morton DL (1976) Production of melanoma-associated antigen(s) by a defined malignant melanoma cell strain grown in chemically defined medium. Cancer Res 36:1503–1509

    PubMed  CAS  Google Scholar 

  6. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88:1052–1061

    PubMed  CAS  Google Scholar 

  7. Cummins DL, Cummins JM, Pantle H, Silverman MA, Leonard AL, Chanmugam A (2006) Cutaneous malignant melanoma. Mayo Clin Proc 81:500–507

    Article  PubMed  Google Scholar 

  8. Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268–277

    PubMed  CAS  Google Scholar 

  9. Davison K, Cote S, Mader S, Miller WH (2003) Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines. Leukemia 17:931–940

    Article  PubMed  CAS  Google Scholar 

  10. Diaz Z, Colombo M, Mann KK, Su H, Smith KN, Bohle DS, Schipper HM, Miller WH Jr (2005) Trolox selectively enhances arsenic-mediated oxidative stress and apoptosis in APL and other malignant cell lines. Blood 105:1237–1245

    Article  PubMed  CAS  Google Scholar 

  11. Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, Wu XC, Friedman C, Harlan L, Warren J, Anderson RN, Pickle LW (2005) Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 97:1407–1427

    Article  PubMed  Google Scholar 

  12. Hyun Park W, Hee Cho Y, Won Jung C, Oh Park J, Kim K, Hyuck Im Y, Lee MH, Ki Kang W, Park K (2003) Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis. Biochem Biophys Res Commun 300:230–235

    Article  PubMed  Google Scholar 

  13. Islam M, Kirkwood JM (2001) Arsenic trioxide induces apoptosis of human melanoma cell lines in vitro. Proc Am Soc Clin Oncol: 2001 (abstr 1435)

  14. Jambor WP, Steinberg BA, Suydam LO (1955) Thiostrepton, a new antibiotic. III. In vivo studies. Antibiot Annu 3:562–565

    PubMed  Google Scholar 

  15. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102–2111

    PubMed  CAS  Google Scholar 

  16. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    PubMed  CAS  Google Scholar 

  17. Kim KB, Bedikian AY, Camacho LH, Papadopoulos NE, McCullough C (2005) A phase II trial of arsenic trioxide in patients with metastatic melanoma. Cancer 104:1687–1692

    Article  PubMed  CAS  Google Scholar 

  18. McKee EE, Ferguson M, Bentley AT, Marks TA (2006) Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother 50:2042–2049

    Article  PubMed  CAS  Google Scholar 

  19. Pan D, Kirillov SV, Cooperman BS (2007) Kinetically competent intermediates in the translocation step of protein synthesis. Mol Cell 25:519–529

    Article  PubMed  CAS  Google Scholar 

  20. Raza A, Buonamici S, Lisak L, Tahir S, Li D, Imran M, Chaudary NI, Pervaiz H, Gallegos JA, Alvi MI, Mumtaz M, Gezer S, Venugopal P, Reddy P, Galili N, Candoni A, Singer J, Nucifora G (2004) Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res 28:791–803

    Article  PubMed  CAS  Google Scholar 

  21. Rego EM, He LZ, Warrell RP Jr, Wang ZG, Pandolfi PP (2000) Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA 97:10173–10178

    Article  PubMed  CAS  Google Scholar 

  22. Rodnina MV, Savelsbergh A, Matassova NB, Katunin VI, Semenkov YP, Wintermeyer W (1999) Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc Natl Acad Sci USA 96:9586–9590

    Article  PubMed  CAS  Google Scholar 

  23. Seol JG, Park WH, Kim ES, Jung CW, Hyun JM, Kim BK, Lee YY (1999) Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem Biophys Res Commun 265:400–404

    Article  PubMed  CAS  Google Scholar 

  24. Serrone L, Zeuli M, Sega FM, Cognetti F (2000) Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res 19:21–34

    PubMed  CAS  Google Scholar 

  25. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP Jr (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348

    Article  PubMed  CAS  Google Scholar 

  26. Tarhini AA, Kirkwood JM, Gooding WE, Stuckert JJ, Agarwala SS (2007) Presented at the American Society of Clinical Oncology (abstr 8569)

  27. Uslu R, Sanli UA, Sezgin C, Karabulut B, Terzioglu E, Omay SB, Goker E (2000) Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. Clin Cancer Res 6:4957–4964

    PubMed  CAS  Google Scholar 

  28. van den Bogert C, Dontje BH, Holtrop M, Melis TE, Romijn JC, van Dongen JW, Kroon AM (1986) Arrest of the proliferation of renal and prostate carcinomas of human origin by inhibition of mitochondrial protein synthesis. Cancer Res 46:3283–3289

    PubMed  Google Scholar 

  29. Wu XX, Ogawa O, Kakehi Y (2004) Enhancement of arsenic trioxide-induced apoptosis in renal cell carcinoma cells by L-buthionine sulfoximine. Int J Oncol 24:1489–1497

    PubMed  CAS  Google Scholar 

  30. Zhang TC, Cao EH, Li JF, Ma W, Qin JF (1999) Induction of apoptosis and inhibition of human gastric cancer MGC-803 cell growth by arsenic trioxide. Eur J Cancer 35:1258–1263

    Article  PubMed  CAS  Google Scholar 

  31. Zhang L, Ging NC, Komoda T, Hanada T, Suzuki T, Watanabe K (2005) Antibiotic susceptibility of mammalian mitochondrial translation. FEBS Lett 579:6423–6427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (R21AR050645) and by a grant from Jacklyn and Miguel Bezos to SJO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth J. Orlow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowling, B.D., Doudican, N., Manga, P. et al. Inhibition of mitochondrial protein translation sensitizes melanoma cells to arsenic trioxide cytotoxicity via a reactive oxygen species dependent mechanism. Cancer Chemother Pharmacol 63, 37–43 (2008). https://doi.org/10.1007/s00280-008-0705-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0705-y

Keywords

Navigation