Skip to main content

Advertisement

Log in

Proteomic analysis of liver cancer cells treated with suberonylanilide hydroxamic acid

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Suberonylanilide hydroxamic acid (SAHA) is an orally administered histone deacetylase inhibitor (HDACI) that has shown significant antitumor activity in a variety of tumor cells. To evaluate if SAHA has an activity against liver cancer, and with an aim to identify the altered cellular factors upon SAHA treatment, human HepG2 cancer cell line was used as a model, and proteomic approach was utilized to elucidate the molecular mechanisms underlying SAHA’s antitumor activity.

Methods

Cell growth inhibition was measured by MTT method, and apoptosis was detected by means of flow cytometry analysis and TUNEL assay. Protein expression profiles were analyzed by 2-DE coupled with MALDI-Q-TOF MS/MS analysis.

Results

A total of 55 differentially expressed proteins were visualized by 2-DE and Coomassie Brilliant Blue (CBB) staining. Of these, 34 proteins were identified via MS/MS analysis. Among the identified proteins, six proteins also displayed significant expression changes at earlier time points upon SAHA treatment, and such alterations were further confirmed by semi-quantitative RT-PCR. Together, at both the mRNA and protein levels, SAHA suppressed the expression of reticulocalbin 1 precursor (RCN1), annexin A3 (ANXA3) and heat shock 27 kDa protein 1 (HSP27), while increasing the expression of aldose reductase (AR), triosephosphate isomerase 1 (TPI) and manganese superoxide dismutase (SOD2).

Conclusion

SAHA remarkably inhibited proliferation of HepG2 cancer cells, and induced apoptosis in vitro. Using proteomics approaches, a variety of differentially expressed proteins were identified in HepG2 cancer cells before and after treatment with SAHA. This study will enable a better understanding of the molecular mechanisms underlying SAHA-mediated antitumor effects at the protein level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SAHA:

Suberonylanilide hydroxamic acid

HADC:

Histone deacetylase

HADCIs:

Histone deacetylase inhibitors

2-DE:

2-Dimensional polyacrylamide gel electrophoresis

HCC:

Hepatocellular carcinoma

RCN1:

Reticulocalbin 1

ANXA3:

Annexin A3

HSP27:

Heat shock 27 kDa protein 1

AR:

Aldose reductase

TPI:

Triosephosphate isomerase 1

SOD2:

Manganese superoxide dismutase

References

  1. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95:3003–3007

    Article  PubMed  CAS  Google Scholar 

  2. Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  PubMed  CAS  Google Scholar 

  3. Butler LM, Agus DB, Scher HI, Higgins B, Rose A, Cordon-Cardo C et al (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170

    PubMed  CAS  Google Scholar 

  4. Cao ZA, Bass KE, Balasubramanian S, Liu L, Schultz B, Verner E et al (2006) CRA-026440: a potent, broad-spectrum, hydroxamic histone deacetylase inhibitor with antiproliferative and antiangiogenic activity in vitro and in vivo. Mol Cancer Ther 5:1693–1701

    Article  PubMed  CAS  Google Scholar 

  5. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193

    Article  PubMed  CAS  Google Scholar 

  6. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  7. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97:10014–10019

    Article  PubMed  CAS  Google Scholar 

  8. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R et al (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA 98:10833–10838

    Article  PubMed  CAS  Google Scholar 

  9. Henderson C, Mizzau M, Paroni G, Maestro R, Schneider C, Brancolini C et al (2003) Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin: a (TSA) and suberoylanilide hydroxamic acid (SAHA). J Biol Chem 278:12579–12589

    Article  PubMed  CAS  Google Scholar 

  10. Takada Y, Gillenwater A, Ichikawa H, Aggarwal BB (2006) Suberoylanilide hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing nuclear factor-kappaB activation. J Biol Chem 281:5612–5622

    Article  PubMed  CAS  Google Scholar 

  11. Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA (2006) Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci USA 103:15540–15545

    Article  PubMed  CAS  Google Scholar 

  12. El-Serag HB, Davila JA, Petersen NJ, McGlynn KA (2003) The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med 139:817–823

    PubMed  Google Scholar 

  13. Wilson JF (2005) Liver cancer on the rise. Ann Intern Med 142:1029–1032

    PubMed  Google Scholar 

  14. Cormier JN, Thomas KT, Chari RS, Pinson CW (2006) Management of hepatocellular carcinoma. J Gastrointest Surg 10:761–780

    Article  PubMed  Google Scholar 

  15. Herold C, Ganslmayer M, Ocker M, Hermann M, Geerts A, Hahn EG et al (2002) The histone-deacetylase inhibitor Trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol 36:233–240

    Article  PubMed  CAS  Google Scholar 

  16. Yamashita Y, Shimada M, Harimoto N, Rikimaru T, Shirabe K, Tanaka S et al (2003) Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. Int J Cancer 103:572–576

    Article  PubMed  CAS  Google Scholar 

  17. Armeanu S, Pathil A, Venturelli S, Mascagni P, Weiss Thomas S, Gottlicher M et al (2005) Apoptosis on hepatoma cells, but not on primary hepatocytes by histone deacetylase inhibitors valproate and ITF2357. J Hepatol 42:210–217

    Article  PubMed  CAS  Google Scholar 

  18. Jain KK (2000) Applications of proteomics in oncology. Pharmacogenomics 1:385–393

    Article  PubMed  CAS  Google Scholar 

  19. Kabuyama Y, Resing KA, Ahn NG (2004) Applying proteomics to signaling networks. Curr Opin Genet Dev 14:492–498

    Article  PubMed  CAS  Google Scholar 

  20. Holly MK, Dear JW, Hu X, Schechter AN, Gladwin MT, Hewitt SM et al (2006) Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure. Kidney Int 70:496–506

    PubMed  CAS  Google Scholar 

  21. Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP (2005) Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 33:53–61

    Article  PubMed  CAS  Google Scholar 

  22. Song H, Ethier SP, Dziubinski ML, Lin J (2004) Stat3 modulates heat shock 27 kDa protein expression in breast epithelial cells. Biochem Biophys Res Commun 314:143–150

    Article  PubMed  CAS  Google Scholar 

  23. Neo JCH, Rose P, Ong CN, Chung MCM (2005) Beta-phenylethyl isothiocyanate mediated apoptosis: a proteomic investigation of early apoptotic protein changes. Proteomics 5:1075–1082

    Article  PubMed  CAS  Google Scholar 

  24. Gray SG, Qian CN, Furge K, Guo X, Teh BT (2004) Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol 24:773–795

    PubMed  CAS  Google Scholar 

  25. Ozawa M, Muramatsu T (1993) Reticulocalbin, a novel endoplasmic reticulum resident Ca(2+)-binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence. J Biol Chem 268:699–705

    PubMed  CAS  Google Scholar 

  26. Tachikui H, Navet AF, Ozawa M (1997) Identification of the Ca(2+)-binding domains in reticulocalbin, an endoplasmic reticulum resident Ca(2+)-binding protein with multiple EF-hand motifs. J Biochem (Tokyo) 121:145–149

    CAS  Google Scholar 

  27. Kent J, Lee M, Schedl A, Boyle S, Fantes J, Powell M et al (1997) The reticulocalbin gene maps to the WAGR region in human and to the small eye Harwell deletion in mouse. Genomics 42:260–267

    Article  PubMed  CAS  Google Scholar 

  28. Yu LR, Zeng R, Shao XX, Wang N, Xu YH, Xia QC (2000) Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis 21:3058–3068

    Article  PubMed  CAS  Google Scholar 

  29. Liu Z, Brattain MG, Appert H (1997) Differential display of reticulocalbin in the highly invasive cell line, MDA-MB-435, versus the poorly invasive cell line, MCF-7. Biochem Biophys Res Commun 231:283–289

    Article  PubMed  CAS  Google Scholar 

  30. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    PubMed  CAS  Google Scholar 

  31. Hsiang CH, Tunoda T, Whang YE, Tyson DR, Ornstein DK (2006) The impact of altered annexin I protein levels on apoptosis and signal transduction pathways in prostate cancer cells. Prostate 66:1413–1424

    Article  PubMed  CAS  Google Scholar 

  32. Niimi S, Harashima M, Gamou M, Hyuga M, Seki T, Ariga T et al (2005) Expression of annexin A3 in primary cultured parenchymal rat hepatocytes and inhibition of DNA synthesis by suppression of annexin A3 expression using RNA interference. Biol Pharm Bull 28:424–428

    Article  PubMed  CAS  Google Scholar 

  33. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  PubMed  CAS  Google Scholar 

  34. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  PubMed  CAS  Google Scholar 

  35. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13:2061–2070

    PubMed  CAS  Google Scholar 

  36. Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T et al (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278:27828–27835

    Article  PubMed  CAS  Google Scholar 

  37. Kammanadiminti SJ, Chadee K (2006) Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem 281:26112–26120

    Article  PubMed  CAS  Google Scholar 

  38. Pacey S, Banerji U, Judson I, Workman P (2006) Hsp90 inhibitors in the clinic. Handb Exp Pharmacol 172:331–358

    Article  PubMed  CAS  Google Scholar 

  39. Guo Z, Boekhoudt GH, Boss JM (2003) Role of the intronic enhancer in tumor necrosis factor-mediated induction of manganous superoxide dismutase. J Biol Chem 278:23570–23578

    Article  PubMed  CAS  Google Scholar 

  40. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS et al (1993) Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 90:3113–3117

    Article  PubMed  CAS  Google Scholar 

  41. Weydert C, Roling B, Liu J, Hinkhouse MM, Ritchie JM, Oberley LW et al (2003) Suppression of the malignant phenotype in human pancreatic cancer cells by the overexpression of manganese superoxide dismutase. Mol Cancer Ther 2:361–369

    PubMed  CAS  Google Scholar 

  42. Venkataraman S, Jiang X, Weydert C, Zhang Y, Zhang HJ, Goswami PC et al (2005) Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene 24:77–89

    Article  PubMed  CAS  Google Scholar 

  43. Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L et al (2006) Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med 41:226–237

    Article  PubMed  CAS  Google Scholar 

  44. Hodge DR, Xiao W, Peng B, Cherry JC, Munroe DJ, Farrar WL (2005) Enforced expression of superoxide dismutase 2/manganese superoxide dismutase disrupts autocrine interleukin-6 stimulation in human multiple myeloma cells and enhances dexamethasone-induced apoptosis. Cancer Res 65:6255–6263

    Article  PubMed  CAS  Google Scholar 

  45. Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–33

    PubMed  CAS  Google Scholar 

  46. Hamaoka R, Fujii J, Miyagawa J, Takahashi M, Kishimoto M, Moriwaki M et al (1999) Overexpression of the aldose reductase gene induces apoptosis in pancreatic beta-cells by causing a redox imbalance. J Biochem (Tokyo) 126:41–47

    CAS  Google Scholar 

  47. Galvez AS, Ulloa JA, Chiong M, Criollo A, Eisner V, Barros LF et al (2003) Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. J Biol Chem 278:38484–38494

    Article  PubMed  CAS  Google Scholar 

  48. Ramana KV, Bhatnagar A, Srivastava SK (2004) Inhibition of aldose reductase attenuates TNF-alpha-induced expression of adhesion molecules in endothelial cells. FASEB J 18:1209–1218

    Article  PubMed  CAS  Google Scholar 

  49. Murata M, Ohta N, Sakurai S, Alam S, Tsai J, Kador PF et al (2001) The role of aldose reductase in sugar cataract formation: aldose reductase plays a key role in lens epithelial cell death (apoptosis). Chem Biol Interact 130–132:617–625

    Article  PubMed  Google Scholar 

  50. Miwa K, Nakamura J, Hamada Y, Naruse K, Nakashima E, Kato K et al (2003) The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract 60:1–9

    Article  PubMed  CAS  Google Scholar 

  51. Gess B, Hofbauer KH, Deutzmann R, Kurtz A (2004) Hypoxia up-regulates triosephosphate isomerase expression via an HIF-dependent pathway. Pflugers Arch 448:175–180

    Article  PubMed  CAS  Google Scholar 

  52. Jiang PZ, Gan M, Huang H, Shen XM, Wang S, Yao KT (2005) Proteomics-based identification of proteins with altered expression induced by 12-O-tetradecanoylphorbol 13-acetate in nasopharyngeal carcinoma CNE2 cells. Acta Biochim Biophys Sin (Shanghai) 37:97–106

    Article  CAS  Google Scholar 

  53. Lieu HY, Song HS, Yang SN, Kim JH, Kim HJ, Park YD et al (2006) Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J Microbiol Biotechnol 16:946–951

    CAS  Google Scholar 

  54. Richon VM (2006) Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor.95(Suppl 1):S2–S6

  55. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  PubMed  CAS  Google Scholar 

  56. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  PubMed  CAS  Google Scholar 

  57. Lescuyer P, Hochstrasser DF, Sanchez JC (2004) Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis 25:1125–1135

    Article  PubMed  CAS  Google Scholar 

  58. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104–1115

    Article  PubMed  CAS  Google Scholar 

  59. Zhang CL, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052

    Article  PubMed  CAS  Google Scholar 

  60. Huang C, Ida H, Ito K, Zhang H, Ito Y (2007) Contribution of reactivated RUNX3 to inhibition of gastric cancer cell growth following suberoylanilide hydroxamic acid (vorinostat) treatment. Biochem Pharmacol 73:990–1000

    Article  PubMed  CAS  Google Scholar 

  61. Sonnemann J, Gange J, Pilz S, Stotzer C, Ohlinger R, Belau A et al (2006) Comparative evaluation of the treatment efficacy of suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer cell lines and primary ovarian cancer cells from patients. BMC Cancer 6:183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National 973 Basic Research Program of China (2004CB518807, 2006CB504303 and 2006CB504302) and the Sichuan Applied Basic Research (07JY029-052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Canhua Huang or Yuquan Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, A., Zhang, H., Li, Z. et al. Proteomic analysis of liver cancer cells treated with suberonylanilide hydroxamic acid. Cancer Chemother Pharmacol 61, 791–802 (2008). https://doi.org/10.1007/s00280-007-0536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0536-2

Keywords

Navigation