Skip to main content

Advertisement

Log in

A new liposomal formulation of Gemcitabine is active in an orthotopic mouse model of pancreatic cancer accessible to bioluminescence imaging

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Despite its rapid enzymatic inactivation and therefore limited activity in vivo, Gemcitabine is the standard drug for pancreatic cancer treatment. To protect the drug, and achieve passive tumor targeting, we developed a liposomal formulation of Gemcitabine, GemLip (∅: 36 nm: 47% entrapment). Its anti-tumoral activity was tested on MIA PaCa-2 cells growing orthotopically in nude mice. Bioluminescence measurement mediated by the stable integration of the luciferase gene was employed to randomize the mice, and monitor tumor growth. GemLip (4 and 8 mg/kg), Gemcitabine (240 mg/kg), and empty liposomes (equivalent to 8 mg/kg GemLip) were injected intravenously once weekly for 5 weeks. GemLip (8 mg/kg) stopped tumor growth, as measured via in vivo bioluminescence, reducing the primary tumor size by 68% (SD ± 8%; p < 0.02), whereas Gemcitabine hardly affected tumor size (-7%; ± 1.5%). In 80% of animals, luciferase activity in the liver indicated the presence of metastases. All treatments, including the empty liposomes, reduced the metastatic burden. Thus, GemLip shows promising antitumoral activity in this model. Surprisingly, empty liposomes attenuate the spread of metastases similar to Gemcitabine and GemLip. Further, luciferase marked tumor cells are a powerful tool to observe tumor growth in vivo, and to detect and quantify metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) CA Cancer J Clin 54(1):8–29

    Article  PubMed  Google Scholar 

  2. Noble S, Goa KL (1997) Drugs 54(3):447–472

    PubMed  CAS  Google Scholar 

  3. Axelson J, Lindell M, Horlin K, Ohlsson B (2005) Pancreatology 5(2–3):251–258

    Article  PubMed  CAS  Google Scholar 

  4. Zagon IS, Jaglowski JR, Verderame MF, Smith JP, Leure-Dupree AE, McLaughlin PJ (2005) Cancer Chemother Pharmacol 56(5):510–520

    Article  PubMed  CAS  Google Scholar 

  5. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber MN et al (1991) J Clin Oncol 9(3):491–498

    PubMed  CAS  Google Scholar 

  6. Wang LR, Huang MZ, Xu N, Shentu JZ, Liu J, Cai J (2005) J Zhejiang Univ Sci B 6(5):446–450

    Article  PubMed  Google Scholar 

  7. Reid JM, Qu W, Safgren SL, Ames MM, Krailo MD, Seibel NL, Kuttesch J, Holcenberg J (2004) J Clin Oncol 22(12):2445–2451

    Article  PubMed  CAS  Google Scholar 

  8. Moog R, Burger AM, Brandl M, Schuler J, Schubert R, Unger C, Fiebig HH, Massing U (2002) Cancer Chemother Pharmacol 49(5):356–366

    Article  PubMed  CAS  Google Scholar 

  9. Shipley LA, Brown TJ, Cornpropst JD, Hamilton M, Daniels WD, Culp HW (1992) Drug Metab Dispos 20(6):849–855

    PubMed  CAS  Google Scholar 

  10. van Borssum Waalkes M, Kuipers F, Havinga R, Scherphof GL (1993) Biochim Biophys Acta 1176(1–2):43–50

    PubMed  Google Scholar 

  11. van Borssum Waalkes M, van Galen M, Morselt H, Sternberg B, Scherphof GL (1993) Biochim Biophys Acta 1148(1):161–172

    Article  PubMed  Google Scholar 

  12. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Cancer Res 55(17):3752–3756

    PubMed  CAS  Google Scholar 

  13. Massing U (1997) Int J Clin Pharmacol Ther 35(2):87–90

    PubMed  CAS  Google Scholar 

  14. Massing U, Fuxius S (2000) Drug Resist Updat 3(3):171–177

    Article  PubMed  CAS  Google Scholar 

  15. Brandl M, Massing U (2003) Vesicular phospholipid gels. In: New RW, Torchillin V (eds) Liposomes practical approaches. IRL-Press at Oxford University Press, Oxford

    Google Scholar 

  16. Schueler J (1998) Entwicklung und Charakterisierung humaner Tumormodelle durch orthotope Implantation. In: Inst. für Veterinärpathologie, Freie Universität, Berlin

  17. Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G (2003) Virchows Arch 442(5):444–452

    PubMed  Google Scholar 

  18. Bold RJ, Chandra J, McConkey DJ (1999) Ann Surg Oncol 6(3):279–285

    Article  PubMed  CAS  Google Scholar 

  19. Katz MH, Bouvet M, Takimoto S, Spivack D, Moossa AR, Hoffman RM (2003) Cancer Res 63(17):5521–5525

    PubMed  CAS  Google Scholar 

  20. Hotz HG, Reber HA, Hotz B, Yu T, Foitzik T, Buhr HJ, Cortina G, Hines OJ (2003) Pancreas 26(4):e89–e98

    Article  PubMed  Google Scholar 

  21. Tomioka D, Maehara N, Kuba K, Mizumoto K, Tanaka M, Matsumoto K, Nakamura T (2001) Cancer Res 61(20):7518–7524

    PubMed  CAS  Google Scholar 

  22. Tsutsumi S, Yanagawa T, Shimura T, Kuwano H, Raz A (2004) Clin Cancer Res 10(22):7775–7784

    Article  PubMed  CAS  Google Scholar 

  23. Bouvet M, Yang M, Nardin S, Wang X, Jiang P, Baranov E, Moossa AR, Hoffman RM (2000) Clin Exp Metastasis 18(3):213–218

    Article  PubMed  CAS  Google Scholar 

  24. Shah K, Weissleder R (2005) NeuroRx 2(2):215–225

    Article  PubMed  Google Scholar 

  25. Tardi C (1999) Vesikuläre Phospholipidgele: in vitro Charakterisierung, Autoklavierbarkeit, Anwendung als Depotarzneiform. In. Dept. Pharmaceutical Technology, Albert-Ludwigs-University of Freiburg, Freiburg

  26. Gossen M, Bujard H (1992) Proc Natl Acad Sci USA 89(12):5547–5551

    Article  PubMed  CAS  Google Scholar 

  27. Workman P, Balmain A, Hickman JA, McNally NJ, Rohas AM, Mitchison NA, Pierrepoint CG, Raymond R, Rowlatt C, Stephens TC et al (1988) Lab Anim 22(3):195–201

    Article  PubMed  CAS  Google Scholar 

  28. Giovannetti E, Mey V, Danesi R, Mosca I, Del Tacca M (2004) Clin Cancer Res 10(9):2936–2943

    Article  PubMed  CAS  Google Scholar 

  29. Braakhuis BJ, van Dongen GA, Vermorken JB, Snow GB (1991) Cancer Res 51(1):211–214

    PubMed  CAS  Google Scholar 

  30. Sener SF, Fremgen A, Menck HR, Winchester DP (1999) J Am Coll Surg 189(1):1–7

    Article  PubMed  CAS  Google Scholar 

  31. Eibl G, Reber HA (2005) Pancreas 31(3):258–262

    Article  PubMed  Google Scholar 

  32. Keller R (1985) Invasion Metastasis 5(5):295–308

    PubMed  CAS  Google Scholar 

  33. Nagami H, Nakano K, Ichihara H, Matsumoto Y, Ueoka R (2006) Bioorg Med Chem Lett 16(4):782–785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are extremely grateful to Marta Rodriguez-Franco and Gunter Neuhaus (Institute for Biology II; Cell Biology;University Freiburg) for the permission to use their CCD camera, and their lab-members for hosting us. Furthermore, we would like to thank Sandra Pöllath and Bianca Giesen for excellent technical assistance, and Lenka Taylor for critically reading the manuscript. This work was funded, in part, by grants from the Clotten Stiftung and Dietmar Hopp Stiftung GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Graeser.

Additional information

C. Bornmann and R. Graeser have equally contributed to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornmann, C., Graeser, R., Esser, N. et al. A new liposomal formulation of Gemcitabine is active in an orthotopic mouse model of pancreatic cancer accessible to bioluminescence imaging. Cancer Chemother Pharmacol 61, 395–405 (2008). https://doi.org/10.1007/s00280-007-0482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0482-z

Keywords

Navigation