Skip to main content
Log in

Platinum drug effects on the expression of genes in the polyamine pathway: time-course and concentration-effect analysis based on Affymetrix gene expression profiling of A2780 ovarian carcinoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

As a follow-up to our previous findings that platinum drugs induce a key enzyme in polyamine catabolism, gene expression profiling and mathematical modeling were used to define the effects of cisplatin and oxaliplatin on the expression of polyamine metabolic pathway genes in A2780 human ovarian carcinoma cells.

Methods

Time-course and concentration–effect experiments were each carried out with cisplatin or oxaliplatin in two separate experiments and cells subjected to gene expression profiling using Affymetrix array technology. Time-course data were modeled using exponential increase and decrease models. Concentration–effect data were modeled using a four parameter Hill model.

Results

Gene expression profiling of human ovarian carcinoma A2780 cells after exposure to either cisplatin or oxaliplatin indicates that the expression of several genes involved in polyamine pathway is affected by the platinum drugs. Mathematical/Statistical modeling of the data from time-course and concentration–effect experiments of gene expression from nine polyamine pathway genes represented on the HGU95Av2 chip, indicates that three biosynthetic pathway genes (SAMDC, ODC1 and SRM) are down-regulated and one catabolic pathway gene (SSAT) is up-regulated. Expression changes were similar for different probesets for a given gene on the array. Studies on the induction of SSAT by platinum drugs suggested by the Affymetrix data have been previously validated from this laboratory (Hector et al. in Mol Cancer Ther 3:813–822, 2004). Here, the effects of oxaliplatin exposure on SAMDC and ODC observed by Affymetix are validated with real time QRT-PCR.

Conclusion

The data indicate a concerted effect of platinum drugs on the polyamine metabolic pathway with down-regulation in the expression of several enzyme genes involved in biosynthesis and many-fold up-regulation in expression of SSAT, an acetylating enzyme gene that is critically involved in polyamine catabolism and export.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

ODC1:

Ornithine decarboxylase

SAMDC:

S-adenosylmethionine decarboxylase

SSAT:

Spermidine/spermine N 1-acetyltransferase (also known as SSAT-1)

SMS:

Spermine synthase

SRM:

Spermidine synthase

SMOX:

Spermine oxidase

OAZ:

Ornithine decarboxylase antienzyme

OAZIN:

Ornithine decarboxylase antienzyme inhibitor

MTA:

Methylthioadenosine

AcCoA:

Acetylcoenzyme A

DENSPM:

N 1 N 11-diethylnorspermine

QRT-PCR:

Quantitative RT-PCR

References

  1. Abeloff MD, Rosen ST, Luk GD, Baylin SB, Zeltzman M, Sjoerdsma A (1986) Phase II trials of α-difluoromethylornithine, an inhibitor of polyamine synthesis in advanced small cell lung cancer and colon cancer. Cancer Treat Rep 70:843

    PubMed  CAS  Google Scholar 

  2. Almon RR, Dubois DC, Jin JY, Jusko WJ (2005) Pharmacogenomic responses of rat liver to methylprednisolone: an approach to mining a rich microarray time series. AAPS J 7:E156–E194

    Article  PubMed  CAS  Google Scholar 

  3. Almon RR, Lai W, Dubois DC, Jusko WJ (2005) Corticosteroid-regulated genes in rat kidney: mining time series array data. Am J Physiol Endocrinol Metab 289:E870–E882

    Article  PubMed  CAS  Google Scholar 

  4. Boulikas T, Vougiouka M (2003) Cisplatin and platinum drugs at the molecular level. (Review). Oncol Rep 10:1663–1682

    PubMed  CAS  Google Scholar 

  5. Canizares F, Salinas J, de las Heras M, Diaz J, Tovar I, Martinez P, Penafiel R (1999) Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: correlation with clinicopathologic parameters. Clinical Cancer Research 5:2035–2041

    PubMed  CAS  Google Scholar 

  6. Canizares F, Salinas J, de las Heras M, Diaz J, Tovar I, Martinez P, Penafiel R (1999) Prgnostic value of ornithine decarboxylase and polyamines in human breast cancer: correlations with clinicopathological parameters. Clin Cancer Res 5:2035–2041

    PubMed  CAS  Google Scholar 

  7. Casero RAJ, Celano P, Ervin SJ, Porter CW, Bergeron RJ, Libby PR (1989) Differential induction of spermidine/spermine N1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Can Res 49:3829–3833

    CAS  Google Scholar 

  8. Chen Y, Kramer D, Jell J, Vujcic S, Porter CW (2003) siRNA suppression of polyamine analogue-induced spermidine/spermine N1-acetyltransferase. Mol Pharm 64:1153–1159

    Article  CAS  Google Scholar 

  9. Chen Y, Kramer DL, Li F, Porter CW (2003) Loss of inhibitor of apoptosis proteins as a determinant of polyamine-analogue-induced apoptosis in human melanoma cells. Oncogene 22:4964–4972

    Article  PubMed  CAS  Google Scholar 

  10. Devereux W, Wang Y, Stewart TM, Hacker A, Smith R, Frydman B, Valasinas AL, Reddy VK, Marton LJ, Ward TD, Woster PM, Casero RA (2003) Induction of the PAOh1/SMO polyamine oxidase by polyamine analogues in human lung carcinoma cells. Cancer Chemother Pharmacol 52:383–390

    Article  PubMed  CAS  Google Scholar 

  11. Di Francesco AM, Riccardi R (2002) Cellular and molecular aspects of the drugs of the future. Cell Mol Life Sci 59:1914–1927

    Article  PubMed  Google Scholar 

  12. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  13. Hector S, Bolanowska-Higdon W, Zdanowicz J, Hitt S, Pendyala L (2001) In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother Pharmacol 48:398–406

    Article  PubMed  CAS  Google Scholar 

  14. Hector S, Hawthorn L, Greco W, Pendyala L (2002) Gene expression profiles after oxaliplatin treatment in A2780 ovarian carcinoma cells. Proc AACR 43:62

    Google Scholar 

  15. Hector S, Porter CW, Kramer DL, Clark K, Prey J, Kiesel N, Diegelman P, Chen Y, Pendyala L (2004) Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N 1, N 11-diethylnorspermine at the level of spermidine/spermine N 1-acetylransferase. Mol Cancer Ther 3:813–822

    PubMed  CAS  Google Scholar 

  16. Kahana C, Asher G, Shaul Y (2005) Mechanisms of protein degradation. An odyssey with ODC. Cell Cycle 4:1461–1464

    PubMed  CAS  Google Scholar 

  17. Kramer DL, Vujcic S, Diegelman P, Alderfer J, Miller JT, Black JD, Bergeron RJ, Porter CW (1999) Polyamine analogue induction of the p53-p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells. Can Res 59:1278–1286

    CAS  Google Scholar 

  18. Levasseur LM, Slocum HK, Rustum YM, Greco WR (1998) Modeling of the time-dependency of in vitro drug cytotoxicity and resistance. Cancer Res 58:5749–5761

    PubMed  CAS  Google Scholar 

  19. Libby PR, Henderson M, Bergeron RJ, Porter CW (1989) Major increases in spermidine/spermine-N1-acetyltransferase activity by spermine analogues and their relationship to polyamine depletion and growth inhibition in L1210 cells. Cancer Res 49:6226–6231

    PubMed  CAS  Google Scholar 

  20. Mangold U (2005) The antizyme family: polyamines and beyond. IUBMB Life 57:671–676

    Article  PubMed  CAS  Google Scholar 

  21. Mohan RR, Challa A, Gupta S, Bostwick DG, Ahmad N, Agarwal R, Marengo SR, Amini SB, Paras F, MacLennan GT, Resnick MI, Mukhtar H (1999) Overexpression of ornithine decarboxylase in prostate cancer and prostatic fluid in humans. Clin Cancer Res 5:143–147

    PubMed  CAS  Google Scholar 

  22. Porter C, Herrera-Omelas L, Pera P, Petrelli NF, Mittleman A (1987) Polyamine biosynthetic activity in normal and neoplastic human colorectal tissues. Cancer 60:1275–1281

    Article  PubMed  CAS  Google Scholar 

  23. Porter CW, Bernacki RJ, Miller J, Bergeron RJ (1993) Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action. Can Res 53:581–586

    CAS  Google Scholar 

  24. Porter CW, Ganis B, Libby PR, Bergeron RJ (1991) Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition in human melanoma cell lines. Cancer Res 51:3715–3720

    PubMed  CAS  Google Scholar 

  25. Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, et al (1990) Comparison of in vitro anticancer drug screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Nat Cancer Inst 82:1113–1118

    Article  PubMed  CAS  Google Scholar 

  26. Scalabrino G, Ferioli ME (1985) Degree of enhancement of polyamine biosynthetic decarboxylase activities in human tumors: A useful new index of degree of malignancy. Cancer Detect Prev 8:11

    PubMed  CAS  Google Scholar 

  27. Shappell NW, Miller JT, Bergeron RJ, Porter CW (1992) Differential effects of the spermine analog, N 1,N 12-bis(ethyl)-spermine, on polyamine metabolism and cell growth in human melanoma cell lines and melanocytes. Anticancer Res 12:1083–1089

    PubMed  CAS  Google Scholar 

  28. Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapetic applications. Cell Mol Life Sci 58:244–258

    Article  PubMed  CAS  Google Scholar 

  29. Thomas T, Balabhadrapathruni S, Gallo MA, Thomas TJ (2002) Development of polyamine analogs as cancer therapeutic agents. [Review]. Oncol Res 13:123–135

    PubMed  CAS  Google Scholar 

  30. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. [erratum appears in Proc Natl Acad Sci USA 2001 98(18):10515]. Proc Natl Acad Sci USA 98:5116–5121

  31. Urdiales JL, Medina MA, Sanchez-Jimenez F (2001) Polyamine metabolism revisited. Eur J Gastroenter 13:1015–1019

    Article  CAS  Google Scholar 

  32. Varma R, Hector S, Pendyala L, Greco WR (2005) Modeling and analysis of drug concentration-effect and time course patterns in gene expression data from microarray experiments. Proc AACR 46:2

    Google Scholar 

  33. Varma RR, Hector S, Clark K, Greco WR, Hawthorn L, Pendyala L (2005) Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10. Oncol Rep 14:925–932

    PubMed  CAS  Google Scholar 

  34. Vujcic S, Diegelman P, Bacchi CJ, Kramer DL, Porter CW (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675

    Article  PubMed  CAS  Google Scholar 

  35. Vujcic S, Halmekyto M, Diegelman P, Gan G, Kramer DL, Janne J, Porter CW (2000) Effects of conditional overexpression of spermidine/spermine N 1-acetyltransferase on polyamine pool dynamics, cell growth, and sensitivity to polyamine analogs. J Biol Chem 275:38319–38328

    Article  PubMed  CAS  Google Scholar 

  36. Vujcic S, Liang P, Diegelman P, Kramer DL, Porter CW (2003) Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem J 370:19–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This Research was supported by NIH CA109619, NIH RR10742 and CA-16056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Pendyala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, R., Hector, S., Greco, W.R. et al. Platinum drug effects on the expression of genes in the polyamine pathway: time-course and concentration-effect analysis based on Affymetrix gene expression profiling of A2780 ovarian carcinoma cells. Cancer Chemother Pharmacol 59, 711–723 (2007). https://doi.org/10.1007/s00280-006-0325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0325-3

Keywords

Navigation