Skip to main content

Advertisement

Log in

Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

A high-rate glycolysis is a fundamental property of solid tumors and is associated with an over-expression of glucose transporters and glycolytic enzymes. We hypothesize that over-expression of glucose transporters in tumors prevents apoptosis, promotes cancer cell survival, and confers drug resistance. Inhibition of glucose transporter will preferentially sensitize the anticancer effects of chemotherapeutic drugs to overcome drug resistance in hypoxia.

Methods

Glucose transporter expressions were detected in cancer tissues and NCI 60 cancer cells with immunostaining and DNA microarray. Glucose uptake was measured with 3H-2-deoxy-glucose. Cytotoxicity of daunorubicin (DNR) in combination of glucose inhibitor was detected by MTS assay under hypoxic condition. Early stage apoptosis was monitored with Annexin V-FITC staining.

Results

Immunostaining showed that GLUT1 was significantly increased in hypoxic regions of the human colon and breast tumors. The expression profiles of all glucose transporters in NCI 60 cancer cells exhibited distinct expression patterns. Phloretin exhibited more than 60% glucose uptake inhibition. Hypoxia conferred two to fivefold higher drug resistance in SW620 and K562 to DNR. Inhibition of glucose uptake by phloretin sensitized cancer cells to DNR for its anticancer activity and apoptosis to overcome drug resistance only under hypoxia.

Conclusion

Cancer cells heavily rely on glucose transporters for glucose uptake to facilitate a high-rate glycolysis under hypoxia for their survival and drug resistance. Combination of glucose transporter inhibitors and chemotherapeutic drugs may provide a preferential novel therapeutic strategy to overcome drug resistance in hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  2. Gatenby RA (1995) The potential role of transformation-induced metabolic changes in tumor-host interaction. Cancer Res 55:4151–4156

    PubMed  CAS  Google Scholar 

  3. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72

    Article  PubMed  CAS  Google Scholar 

  4. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444

    Article  PubMed  CAS  Google Scholar 

  5. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  PubMed  CAS  Google Scholar 

  6. Hockel M, Schlenger K, Hockel S, Vaupel P (1999) Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59:4525–4528

    PubMed  CAS  Google Scholar 

  7. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  PubMed  CAS  Google Scholar 

  8. Gallagher BM, Ansari A, Atkins H, Casella V, Christman DR, Fowler JS, Ido T, MacGregor RR, Som P, Wan CN, Wolf AP, Kuhl DE, Reivich M (1977) Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo tissue distribution and imaging studies in animals. J Nucl Med 18:990–996

    PubMed  CAS  Google Scholar 

  9. Penta JS, Johnson FM, Wachsman JT, Copeland WC (2001) Mitochondrial DNA in human malignancy. Mutat Res 488:119–133

    Article  PubMed  CAS  Google Scholar 

  10. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Article  PubMed  Google Scholar 

  11. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  PubMed  CAS  Google Scholar 

  12. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  13. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276:9519–9525

    Article  PubMed  CAS  Google Scholar 

  14. Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. Embo J 17:5085–5094

    Article  PubMed  CAS  Google Scholar 

  15. Palmer LA, Johns RA (1998) Hypoxia upregulates inducible (Type II) nitric oxide synthase in an HIF-1 dependent manner in rat pulmonary microvascular but not aortic smooth muscle cells. Chest 114:33S–34S

    PubMed  CAS  Google Scholar 

  16. Palmer LA, Semenza GL, Stoler MH, Johns RA (1998) Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 274:L212–L219

    PubMed  CAS  Google Scholar 

  17. Figueroa YG, Chan AK, Ibrahim R, Tang Y, Burow ME, Alam J, Scandurro AB, Beckman BS (2002) NF-kB plays a key role in hypoxia-inducible factor-1-regulated erythropoietin gene expression. Exp Hematol (New York, NY, United States) 30:1419–1427

    CAS  Google Scholar 

  18. Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    PubMed  CAS  Google Scholar 

  19. Yamagata M, Hasuda K, Stamato T, Tannock IF (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77:1726–1731

    PubMed  CAS  Google Scholar 

  20. Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schurmann A, Seino S, Thorens B (2002) Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282:E974–E976

    PubMed  CAS  Google Scholar 

  21. Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18:247–256

    Article  PubMed  CAS  Google Scholar 

  22. Kawamura T, Kusakabe T, Sugino T, Watanabe K, Fukuda T, Nashimoto A, Honma K, Suzuki T (2001) Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer 92:634–641

    Article  PubMed  CAS  Google Scholar 

  23. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057

    Article  PubMed  CAS  Google Scholar 

  24. Verhagen JN, Van der Heijden MC, Rijksen G, Der Kinderen PJ, Van Unnik JA, Staal GE (1985) Determination and characterization of hexokinase in thyroid cancer and benign neoplasms. Cancer 55:1519–1524

    Article  PubMed  CAS  Google Scholar 

  25. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL (2002) Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29:443–453

    Article  PubMed  CAS  Google Scholar 

  26. Yasuda S, Arii S, Mori A, Isobe N, Yang W, Oe H, Fujimoto A, Yonenaga Y, Sakashita H, Imamura M (2004) Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor-1alpha and its significance. J Hepatol 40:117–123

    Article  PubMed  CAS  Google Scholar 

  27. Haberkorn U, Morr I, Oberdorfer F, Bellemann ME, Blatter J, Altmann A, Kahn B, van Kaick G (1994) Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med 35:1842–1850

    PubMed  CAS  Google Scholar 

  28. Burt BM, Humm JL, Kooby DA, Squire OD, Mastorides S, Larson SM, Fong Y (2001) Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 3:189–195

    Article  PubMed  CAS  Google Scholar 

  29. Anderle P, Rakhmanova V, Woodford K, Zerangue N, Sadee W (2003) Messenger RNA expression of transporter and ion channel genes in undifferentiated and differentiated Caco-2 cells compared to human intestines. Pharm Res 20:3–15

    Article  PubMed  CAS  Google Scholar 

  30. Huang Y, Anderle P, Bussey KJ, Barbacioru C, Shankavaram U, Dai Z, Reinhold WC, Papp A, Weinstein JN, Sadee W (2004) Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 64:4294–4301

    Article  PubMed  CAS  Google Scholar 

  31. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236–244

    Article  PubMed  CAS  Google Scholar 

  32. Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES, Golub TR (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci USA 98:10787–10792

    Article  PubMed  CAS  Google Scholar 

  33. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  34. Unruh A, Ressel A, Mohamed HG, Johnson RS, Nadrowitz R, Richter E, Katschinski DM, Wenger RH (2003) The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene 22:3213–3220

    Article  PubMed  CAS  Google Scholar 

  35. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  36. Koch S, Mayer F, Honecker F, Schittenhelm M, Bokemeyer C (2003) Efficacy of cytotoxic agents used in the treatment of testicular germ cell tumours under normoxic and hypoxic conditions in vitro. Br J Cancer 89:2133–2139

    Article  PubMed  CAS  Google Scholar 

  37. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Fang, L., Gibbs, S. et al. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59, 495–505 (2007). https://doi.org/10.1007/s00280-006-0291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0291-9

Keywords

Navigation