Skip to main content

Advertisement

Log in

A phase I, pharmacokinetic and pharmacodynamic dose escalation trial of weekly paclitaxel with interferon-α2b in patients with solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: Paclitaxel and interferon have demonstrated anti-angiogenic activity in vitro and in vivo. The toxicity, pharmacokinetics, and pharmacodynamics of paclitaxel with interferon-α2b (IFN-α2b) were assessed in patients with solid tumors to assess the feasibility of this novel anti-angiogenic regimen. Methods: IFN-α2b (1 million units) was administered twice daily by subcutaneous injection. Paclitaxel was given weekly over 1 h starting at 30 mg/m2 and increased to 50 mg/m2. Cycles were repeated every 4 weeks. Results: Nineteen patients with a variety of solid tumors were enrolled. Dose-limiting toxicity in cycle 1 was observed at 50 mg/m2. Eleven patients were treated at 40 mg/m2 with no undue toxicity. Pharmacokinetic parameter comparison studies were completed in 11 patients who received days 1 and 29 paclitaxel. Mean paclitaxel clearance and area under the curve (0–∞) were not statistically different from days 1 to 29. There was a 50% increase in the average Cmax from days 1 to 29. There was also a 73% decrease of matrix metalloproteinase-9 (MMP-9) levels in these 11 patients from days 1 to 29 (p < 0.0005). All three patients with cutaneous angiosarcomas experienced clinically meaningful remissions. In addition, minor responses were observed in one patient with heavily pretreated ovarian cancer and another with adrenocortical carcinoma. Conclusion: This trial details the inability to dose escalate to the maximum tolerated dose of weekly paclitaxel when combined with low-dose interferon. However, this low-dose regimen caused a significant decrease in MMP-9 and demonstrated anti-cancer activity in cutaneous angiosarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Slichenmyer WJ, Von Hoff DD (1991) Taxol: a new and effective anti-cancer drug. Anticancer Drugs 2:519–530

    Article  PubMed  CAS  Google Scholar 

  2. Milas L, Hunter NR, Kurdoglu B, et al (1995) Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian tumors treated with taxol. Cancer Chemother Pharmacol 35:297–303

    PubMed  CAS  Google Scholar 

  3. Belotti D, Vergani V, Drudis T, et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849

    PubMed  CAS  Google Scholar 

  4. Vacca A, Ribatti D, Iurlaro M, et al (2002) Docetaxel versus paclitaxel for antiangiogenesis. J Hematother Stem Cell Res 11:103–118

    Article  PubMed  CAS  Google Scholar 

  5. Grant DS, Williams TL, Zahaczewsky M, et al (2003) Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer 104:121–129

    Article  PubMed  CAS  Google Scholar 

  6. Pyrhonen S, Salminen E, Ruutu M, et al (1999) Prospective randomized trial of interferon alfa-2a plus vinblastine versus vinblastine alone in patients with advanced renal cell cancer. J Clin Oncol 17:2859–2867

    PubMed  CAS  Google Scholar 

  7. Flanigan RC, Salmon SE, Blumenstein BA, et al (2001) Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med 345:1655–1659

    Article  PubMed  CAS  Google Scholar 

  8. Kirkwood JM, Ibrahim JG, Sosman JA, et al (2001) High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol 19:2370–2380

    PubMed  CAS  Google Scholar 

  9. Kirkwood JM, Ibrahim JG, Sondak VK, et al (2000) High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol 18:2444–2458

    PubMed  CAS  Google Scholar 

  10. Schuchter LM (2004) Adjuvant interferon therapy for melanoma: high-dose, low-dose, no dose, which dose? J Clin Oncol 22:7–10

    Article  PubMed  CAS  Google Scholar 

  11. Grob JJ, Dreno B, de la Salmoniere P, et al (1998) Randomised trial of interferon alpha-2a as adjuvant therapy in resected primary melanoma thicker than 1.5 mm without clinically detectable node metastases. French Cooperative Group on Melanoma. Lancet 351:1905–1910

    CAS  Google Scholar 

  12. von Marschall Z, Scholz A, Cramer T, et al (2003) Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J Natl Cancer Inst 95:437–448

    Article  Google Scholar 

  13. Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ (1995) Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 92:4562–4566

    Article  PubMed  CAS  Google Scholar 

  14. Jonasch E, Haluska FG (2001) Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6:34–55

    Article  PubMed  CAS  Google Scholar 

  15. Bauvois B, Dumont J, Mathiot C, et al (2002) Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by interferons. Leukemia 16:791–798

    Article  PubMed  CAS  Google Scholar 

  16. Tedjarati S, Baker CH, Apte S, et al (2002) Synergistic therapy of human ovarian carcinoma implanted orthotopically in nude mice by optimal biological dose of pegylated interferon alpha combined with paclitaxel. Clin Cancer Res 8:2413–2422

    PubMed  CAS  Google Scholar 

  17. Brockmeyer NH, Barthel B, Mertins L, et al (1998) Changes of antipyrine pharmacokinetics during influenza and after administration of interferon-alpha and -beta. Int J Clin Pharmacol Ther 36:309–311

    PubMed  CAS  Google Scholar 

  18. Sonnichsen DS, Liu Q, Schuetz EG, Schuetz JD, Pappo A, Relling MV (1995) Variability in human cytochrome P450 paclitaxel metabolism. J Pharmacol Exp Ther 275:566–575

    PubMed  CAS  Google Scholar 

  19. DiPaola RS, Rafi MM, Vyas V, et al (1999) Phase I clinical and pharmacologic study of 13-cis-retinoic acid, interferon alfa, and paclitaxel in patients with prostate cancer and other advanced malignancies. J Clin Oncol 17:2213–2218

    PubMed  CAS  Google Scholar 

  20. Thalasila A, Poplin E, Shih J, et al (2003) A phase I trial of weekly paclitaxel, 13-cis-retinoic acid, and interferon alpha in patients with prostate cancer and other advanced malignancies. Cancer Chemother Pharmacol 52:119–124

    Article  PubMed  CAS  Google Scholar 

  21. Vaishampayan U, Flaherty L, Du W, et al (2001) Phase II evaluation of paclitaxel, alpha-interferon, and cis-retinoic acid in advanced renal cell carcinoma. Cancer 92:519–523

    Article  PubMed  CAS  Google Scholar 

  22. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    Article  PubMed  CAS  Google Scholar 

  23. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  24. Himelstein BP, Canete-Soler R, Bernhard EJ, et al (1994) Metalloproteinases in tumor progression: the contribution of MMP-9. Invasion Metastasis 14:246–258

    PubMed  CAS  Google Scholar 

  25. Klein G, Vellenga E, Fraaije MW, et al (2004) The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 50:87–100

    CAS  Google Scholar 

  26. Nguyen M, Arkell J, Jackson CJ (2001) Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol 33:960–970

    Article  PubMed  CAS  Google Scholar 

  27. Gohji K, Fidler IJ, Tsan R, et al (1994) Human recombinant interferons-beta and -gamma decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells. Int J Cancer 58:380–384

    PubMed  CAS  Google Scholar 

  28. Kato N, Nawa A, Tamakoshi K, et al (1995) Suppression of gelatinase production with decreased invasiveness of choriocarcinoma cells by human recombinant interferon beta. Am J Obstet Gynecol 172:601–606

    Article  PubMed  CAS  Google Scholar 

  29. Slaton JW, Perrotte P, Inoue K, et al (1999) Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin Cancer Res 5:2726–2734

    PubMed  CAS  Google Scholar 

  30. Solorzano CC, Hwang R, Baker CH, et al (2003) Administration of optimal biological dose and schedule of interferon alpha combined with gemcitabine induces apoptosis in tumor-associated endothelial cells and reduces growth of human pancreatic carcinoma implanted orthotopically in nude mice. Clin Cancer Res 9:1858–1867

    PubMed  CAS  Google Scholar 

  31. Huang SF, Kim SJ, Lee AT, et al (2002) Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel. Cancer Res 62:5720–5726

    PubMed  CAS  Google Scholar 

  32. Akerley W, Herndon JE, Egorin MJ, et al (2003) Weekly, high-dose paclitaxel in advanced lung carcinoma: a phase II study with pharmacokinetics by the Cancer and Leukemia Group B. Cancer 97:2480–2486

    Article  PubMed  CAS  Google Scholar 

  33. Richtig E, Soyer HP, Posch M, et al (2005) Prospective, randomized, multicenter, double-blind placebo-controlled trial comparing adjuvant interferon alfa and isotretinoin with interferon alfa alone in stage IIA and IIB melanoma: European Cooperative Adjuvant Melanoma Treatment Study Group. J Clin Oncol 23:8655–8663

    Article  PubMed  Google Scholar 

  34. Fata F, O’Reilly E, Ilson D, et al (1999) Paclitaxel in the treatment of patients with angiosarcoma of the scalp or face. Cancer 86:2034–2037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Walther Cancer Institute, Bristol Myers Squibb, Schering Plough, Indiana University General Clinical Research Center at Indiana University, School of Medicine, M01RR00750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Sweeney.

Additional information

Presented in part at the 2003 Annual Meeting of American Association for Cancer Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, B., Fukunaga, A., Murry, D. et al. A phase I, pharmacokinetic and pharmacodynamic dose escalation trial of weekly paclitaxel with interferon-α2b in patients with solid tumors. Cancer Chemother Pharmacol 59, 261–268 (2007). https://doi.org/10.1007/s00280-006-0264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0264-z

Keywords

Navigation