Skip to main content

Advertisement

Log in

Thalidomide and celecoxib as potential modulators of irinotecan’s activity in cancer patients

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: Nuclear factor-κB (NF-κB) activation induces resistance to irinotecan. Preclinically, thalidomide and COX-2 inhibitors reduce NF-κB activation. We tested the feasibility of combining irinotecan with thalidomide and thalidomide/celecoxib in patients with refractory malignancies. Patients/methods: The study was conducted in two parts. First, the optimal dose of thalidomide (400 or 200 mg daily) in combination with irinotecan 125 mg/m2 days 1 and 8 every 3 weeks was determined. In the second part, celecoxib 400 mg twice-daily was added to irinotecan/thalidomide. Pharmacokinetics of irinotecan and thalidomide alone or concurrently were evaluated. Tumor necrosis factor alpha, beta-fibroblast growth factor, and NF-κB activation were measured in blood mononuclear cells (PBMC). No CYP450 enzyme inducers/inhibitors were allowed. Results: Thirty-six patients were enrolled: Eleven received thalidomide 400 mg, 13 thalidomide 200 mg and 12 thalidomide 400 mg and celecoxib, with irinotecan. For the two-drug combination, there was a higher rate of moderate/severe diarrhea/myelosuppression with thalidomide 200 mg. Thus thalidomide 400 mg was combined with celecoxib. The triple combination resulted in similar toxicity as the doublet with the lower thalidomide dose. Concurrent administration of irinotecan/thalidomide did not influence pharmacokinetics. Anti-tumor responses occurred in two patients and prolonged stabilization in eight others. NF-κB activation increased over time. Patients experiencing tumor response or prolonged stabilization had lower NF-κB activation, albeit not statistically significant (P = 0.124). Conclusions: The combination of thalidomide/irinotecan is safe and devoid of PK interactions. Thalidomide 400 mg appeared more suitable for combination, whereas the addition of celecoxib did not improve tolerability. Tumor-specific studies in patients with lesser prior treatment will be necessary to establish the therapeutic impact of the combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hsiang YH, Liu LF (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48:1722–1726

    PubMed  CAS  Google Scholar 

  2. Douillard JY, Cunningham D, Roth AD et al (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355:1041–1047

    Article  PubMed  CAS  Google Scholar 

  3. Ilson DH, Saltz L, Enzinger P et al (1999) Phase II trial of weekly irinotecan plus cisplatin in advanced esophageal cancer. J Clin Oncol 17:3270–3275

    PubMed  CAS  Google Scholar 

  4. Noda K, Nishiwaki Y, Kawahara M et al (2002) Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med 346:85–91

    Article  PubMed  CAS  Google Scholar 

  5. Xu Y, Villalona-Calero MA (2002) Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol 13:1841–1851

    Article  PubMed  CAS  Google Scholar 

  6. Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246

    Article  PubMed  CAS  Google Scholar 

  7. Bargou R, Emmerich F, Krappmann D et al (1997) Constitutive activation of NF-kappaB -RelA is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969

    PubMed  CAS  Google Scholar 

  8. Karin M, Cao Y, Greten FR, Li Z (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev 2:301–310

    Article  CAS  Google Scholar 

  9. Mayo MW, Wang C, Cogswell PC et al (1997) Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812

    Article  PubMed  CAS  Google Scholar 

  10. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha induced cell death. Science 274:782

    Article  PubMed  CAS  Google Scholar 

  11. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683

    Article  PubMed  CAS  Google Scholar 

  12. Chen C, Edelstein LC, Gelinas C (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20(8):2687–2695

    Article  PubMed  Google Scholar 

  13. Cusack JC, Liu R, Baldwin AS (2000) Inducible chemoresistance to 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (CPT-11) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-kappaB activation. Cancer Res 60:2323–2330

    PubMed  CAS  Google Scholar 

  14. Wang C, Cusack JC, Liu R, Baldwin AS (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 5:412

    Article  PubMed  CAS  Google Scholar 

  15. Moreira AL, Sampaio EP, Zmuidzinas A et al (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177:1675–1680

    Article  PubMed  CAS  Google Scholar 

  16. D’Amato R, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  CAS  Google Scholar 

  17. Kenyon BM, Browne F, D’Amato RJ (1997) Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64:971–978

    Article  PubMed  CAS  Google Scholar 

  18. Govindarajan R, Heaton KM, Broadwater R, Zeitlin A, Lang NP, Hauer-Jensen M (2000) Effect of thalidomide on gastrointestinal toxic effects of irinotecan. Lancet 356(9229):566–567

    Article  PubMed  CAS  Google Scholar 

  19. Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS Jr (2001) Inhibition of NF-kappaB activity by thalidomide through suppression of IκB kinase activity. J Biol Chem 276:22382–22387

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto Y, Yin MJ, Lin KM, Gaynor RB (1999) Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem 274:27307–27314

    Article  PubMed  CAS  Google Scholar 

  21. Yin M, Yamamoto T, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of IkappaB kinase-beta. Nature 396:77–80

    Article  PubMed  CAS  Google Scholar 

  22. National Cancer Institute Common Toxicity Criteria, version 2.0. 1999

  23. Drengler RL, Kuhn J, Schaaf L et al (1999) A phase I and pharmacokinetic trial of oral irinotecan (CPT-11) administered daily for 5 every 3 weeks. J Clin Oncol 17:685–696

    PubMed  CAS  Google Scholar 

  24. Lyon A, Duran G, Raisys VA (1995) Determination of thalidomide by high performance liquid chromatography: methodological strategy for clinical trials. Clin Biochem 28:467–470

    Article  PubMed  CAS  Google Scholar 

  25. Figg WD, Raje S, Bauer KS et al (1999) Pharmacokinetics of thalidomide in an elderly prostate cancer population. J Pharm Sci 88:121–125

    Article  PubMed  CAS  Google Scholar 

  26. Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  Google Scholar 

  27. Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 8:2182–2194

    Google Scholar 

  28. Teo SK, Colburn WA, Tracewell WG, Kook KA, Stirling DI, Jaworsky MS, Scheffler MA, Thomas SD, Laskin OL (2004) Clinical pharmacokinetics of thalidomide. Clin Pharmacokinet 43(5):311–327

    Article  PubMed  CAS  Google Scholar 

  29. Trifan OC, Durham WF, Salazar VS et al (2002) Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res 62(20):5778–5784

    PubMed  CAS  Google Scholar 

  30. Singhal S, Mehta J, Desikan R et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341(21):1565–1571

    Article  PubMed  CAS  Google Scholar 

  31. Santos A, Zannetta S, Cresteil T et al (2000) Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res 6:2012–2020

    PubMed  CAS  Google Scholar 

  32. Gupta E, Wang X, Ramirez J, Ratain MJ (1997) Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Cancer Chemother Pharmacol 39:440–444

    Article  PubMed  CAS  Google Scholar 

  33. Allegrini G, Di Paolo A, Falcone S et al (2003) Irinotecan and thalidomide in patients with advanced cancer; evaluation of tolerability and pharmacokinetic interactions. Proc Am Soc Clin Oncol 22:140 (abstr.559)

    Google Scholar 

  34. Fuchs CS, Moore MR, Harker G, Villa L, Rinaldi D, Hecht JR (2003) Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol 21(5):807–814

    Article  PubMed  CAS  Google Scholar 

  35. Fujita J, Mestre JR, Zeldis JB, Subbaramaiah K, Dannenberg AJ (2001) Thalidomide and its analogues inhibit lipopolysaccharide-mediated induction of cyclooxygenase-2. Clin Cancer Res 7:3349–3355

    PubMed  CAS  Google Scholar 

  36. Argiles JM et al (1992) The role of cytokines in muscle wasting: its relation with cancer cachexia. Med Res Rev 12(6):637–652

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Villalona-Calero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalona-Calero, M., Schaaf, L., Phillips, G. et al. Thalidomide and celecoxib as potential modulators of irinotecan’s activity in cancer patients. Cancer Chemother Pharmacol 59, 23–33 (2007). https://doi.org/10.1007/s00280-006-0249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0249-y

Keywords

Navigation