Skip to main content

Advertisement

Log in

BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: Breast cancer resistance protein (BCRP) confers resistance against topoisomerase I inhibitors in cancer cells. Very recently, we reported that gefitinib reverses BCRP-mediated drug resistance by direct inhibition. However, it remains undetermined how much BCRP contributes to the resistance to topoisomerase I inhibitors in non-small cell lung cancer (NSCLC). The present study was designed to examine whether BCRP levels in NSCLC cells are correlated with the resistance to topoisomerase I inhibitors and the reversal effect by gefitinib. Methods: BCRP levels and its function were evaluated by Western blotting and flowcytometry, respectively. Gefitinib-insensitive NSCLC cells expressed various levels of BCRP, which were closely correlated not only with the IC50 values of SN-38 (r=0.874, P<0.05) and those of topotecan (r=0.968, P<0.001), but also with the reversal effects of 1 μM gefitinib on SN-38 resistance (r=0.956, P<0.001) and topotecan resistance (r=0.977, P=0.0001). Results: BCRP levels accounted for between 80 and 90% of the variation in the resistance to topoisomerase I inhibitors and the reversal effects by gefitinib. Also, gefitinib increased intracellular topotecan accumulation in proportion to the BCRP levels. Conclusions: These findings suggest that BCRP is the most important molecule responsible for topoisomerase I inhibitor resistance, and that the development of BCRP inhibitors is an effective approach for overcoming this resistance. In addition, the examination of BCRP levels in NSCLC tissues may identify an optimal patient population for treatment with topoisomerase I inhibitors alone or in combination with BCRP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

NSCLC:

Non-small cell lung cancer

BCRP:

Breast cancer resistance protein

EGFR:

Epidermal growth factor receptor

SN-38:

7-Ethyl-10-hydroxycamptothecin (the active metabolite of irinotecan)

MRP:

Multidrug resistance protein

References

  1. Allen JD, Schinkel AH (2002) Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2). Mol Cancer Ther 1:427–34

    PubMed  CAS  Google Scholar 

  2. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, Yokoyama A, Saitoh S, Shimokata K, Hasegawa Y (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60:6921–6926

    PubMed  CAS  Google Scholar 

  3. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  PubMed  CAS  Google Scholar 

  4. Cummings J, Zelcer N, Allen JD, Yao D, Boyd G, Maliepaard M, Friedberg TH, Smyth JF, Jodrell DI (2004) Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins. Biochem Pharmacol 67:31–39

    Article  PubMed  CAS  Google Scholar 

  5. De Bruin M, Miyake K, Litman T, Robey R, Bates SE (1999) Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett 146:117–126

    Article  PubMed  Google Scholar 

  6. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670

    Article  PubMed  CAS  Google Scholar 

  7. Fukuda M, Oka M, Soda H, Terashi K, Kawabata S, Nakatomi K, Takatani H, Tsurutani J, Tsukamoto K, Noguchi Y, Fukuda M, Kinoshita A et al (1999) Phase I study of irinotecan combined with carboplatin in previously untreated solid cancers. Clin Cancer Res 5:3963–3969

    PubMed  CAS  Google Scholar 

  8. Herbst RS (2002) ZD1839: targeting the epidermal growth factor receptor in cancer therapy. Expert Opin Investig Drugs 11:837–849

    Article  PubMed  CAS  Google Scholar 

  9. Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, Traxler P (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64:2333–2337

    Article  PubMed  CAS  Google Scholar 

  10. Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T, Miki Y, Sugimoto Y (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1:611–616

    PubMed  CAS  Google Scholar 

  11. Iyer L, Ramirez J, Shepard DR, Bingham CM, Hossfeld DK, Ratain MJ, Mayer U (2002) Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice. Cancer Chemother Pharmacol 49:336–341

    Article  PubMed  CAS  Google Scholar 

  12. Joto N, Ishii M, Kuga H, Mitsui I, Tohgo A (1997) DX-8951f, a water-soluble camptothecin analog, exhibits potent antitumor activity against a human lung cancer cell line and its SN-38-resistant variant. Int J Cancer 72:680–686

    Article  PubMed  CAS  Google Scholar 

  13. Kawabata S, Oka M, Shiozawa K, Tsukamoto K, Nakatomi K, Soda H, Fukuda M, Ikegami Y, Sugahara K, Yamada Y, Kamihira S, Doyle LA et al (2001) Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 280:1216–1223

    Article  PubMed  CAS  Google Scholar 

  14. Kawabata S, Oka M, Soda H, Shiozawa K, Nakatomi K, Tsurutani J, Nakamura Y, Doi S, Kitazaki T, Sugahara K, Yamada Y, Kamihira S et al (2003) Expression and functional analyses of breast cancer resistance protein in lung cancer. Clin Cancer Res 9:3052–3057

    PubMed  CAS  Google Scholar 

  15. Kitazaki T, Oka M, Nakamura Y, Tsurutani J, Doi S, Yasunaga M, Takemura M, Yabuuchi H, Soda H, Kohno S (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49:337–343

    Article  PubMed  Google Scholar 

  16. Koizumi F, Kanazawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K (2004) Synergistic interaction between the EGFR tyrosine kinase inhibitior gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 108:464–472

    Article  PubMed  CAS  Google Scholar 

  17. Kubota K, Nishiwaki Y, Ohashi Y, Saijo N, Ohe Y, Tamura T, Negoro S, Ariyoshi Y, Nakagawa K, Fukuoka M (2004) The Four-Arm Cooperative Study (FACS) for advanced non-small-cell lung cancer (NSCLC). ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 22:14S

    Google Scholar 

  18. Maliepaard M, van Gastelen MA, de Jong LA, Pluim D, van Waardenburg RC, Ruevekamp-Helmers MC, Floot BG, Schellens JH (1999) Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 59:4559–4563

    PubMed  CAS  Google Scholar 

  19. Nakamura Y, Oka M, Soda H, Shiozawa K, Yoshikawa M, Itoh A, Ikegami Y, Tsurutani J, Nakatomi K, Kitazaki T, Doi S, Yoshida H et al (2005) Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65:1541–1546

    Article  PubMed  CAS  Google Scholar 

  20. Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano k, Shiozawa K, Kawabata S, Soda H, Tanabe S, Kohno S (2001) Transport of 7-ethyl-10hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun 288:827–832

    Article  PubMed  CAS  Google Scholar 

  21. Naruse I, Ohmori T, Ao Y, Fukumoto H, Kuroki T, Mori M, Saijo N, Nishio K (2002) Antitumor activity of the selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) Iressa (ZD1839) in an EGFR-expressing multidrug-resistant cell line in vitro and in vivo. Int J Cancer 98:310–315

    Article  PubMed  CAS  Google Scholar 

  22. Noda K, Nishiwaki Y, Kawahara M, Negoro S, Sugiura T, Yokoyama A, Fukuoka M, Mori K, Watanabe K, Tamura T, Yamamoto S, Saijo N (2002) Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med 346:85–91

    Article  PubMed  CAS  Google Scholar 

  23. Oguri T, Takahashi T, Miyazaki M, Isobe T, Kohno N, Mackenzie PI, Fujiwara Y (2004) UGT1A10 is responsible for SN-38 glucuronidation and its expression in human lung cancers. Anticancer Res 24:2893–2896

    PubMed  CAS  Google Scholar 

  24. Özvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Váradi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285:111–117

    Article  PubMed  CAS  Google Scholar 

  25. Özvegy C, Váradi A, Sarkadi B (2002) Characterization of drug transport, ATP hydrosis, and nucleotide trapping by the human ABCG2 multidrug transporter: modulation of substrate specificity by a point mutation. J Biol Chem 277:47890–47990

    Article  Google Scholar 

  26. Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60:47–50

    PubMed  CAS  Google Scholar 

  27. Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T, Mizuta Y, Murase K et al (2004) Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer 108:146–151

    Article  PubMed  CAS  Google Scholar 

  28. Stewart CF, Leggas M, Schuetz JD, Panetta JC, Peterson J, Daw N, Jenkins JJ 3rd, Gilbertson R, Germain GS, Harwood FC, Houghton PJ (2004) Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 20:7491–7499

    Article  Google Scholar 

  29. Takahashi T, Fujiwara Y, Yamakido M, Katoh O, Watanabe H, Mackenzie PI (1997) The role of glucuronidation in 7-ethyl-10-hydroxycamptothecin resistance in vitro. Cancer Sci 88:1211–1217

    Article  CAS  Google Scholar 

  30. Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y (2004) Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 9:1119–1125

    Google Scholar 

  31. Yoh K, Ishi G, Yokose T, Minegami Y, Tsuta K, Goto K, Nishiwaki Y, Kodama T, Suga M, Ochiai A (2004) Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 10:1691–1697

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Soda.

Additional information

S. Nagashima and H. Soda contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, S., Soda, H., Oka, M. et al. BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer. Cancer Chemother Pharmacol 58, 594–600 (2006). https://doi.org/10.1007/s00280-006-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0212-y

Keywords

Navigation