Skip to main content

Advertisement

Log in

The effect of cytostatic drug treatment on intestine-specific transcription factors Cdx2, GATA-4 and HNF-1α in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Chemotherapy-induced intestinal damage is a very important dose-limiting side effect for which there is no definitive prophylaxis or treatment. This is in part due to the lack of understanding of its pathophysiology and impact on intestinal differentiation. The objective of this study was to investigate the gene expression of the small intestinal transcription factors HNF-1α, Cdx2, GATA-4 in an experimental model of methotrexate (MTX)-induced intestinal damage, and to correlate these alterations with histological damage, epithelial proliferation and differentiation. HNF-1α, Cdx2 and GATA-4 are critical transcription factors in epithelial differentiation, and in combination they act as promoting factors of the sucrase–isomaltase (SI) gene, an enterocyte-specific differentiation marker which is distinctly downregulated after MTX treatment. Mice received two doses of MTX i.v. on two consecutive days and were sacrificed 1, 3 and 7 or 9 days after final injection. Segments of the jejunum were taken for morphological, immunohistochemical and quantitative analyses. Intestinal damage was most severe at day 3 and was associated with decreased expression of the transcriptional factors HNF-1α, Cdx2 and GATA-4, which correlated well with decreased expression of SI, and seemed inversely correlated with enhanced proliferation of epithelial crypt cells. During severe damage, the epithelium was preferentially concerned with proliferation rather than differentiation, most likely in order to restore the small intestinal barrier function rather than maintaining its absorptive function. Since HNF-1α, Cdx2 and GATA-4 are critical for intestine-specific gene expression and therefore crucial in epithelial differentiation, these results may explain, at least in part, why intestinal differentiation is compromised during MTX treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cdx2:

Caudal-related homeobox transcription factor

HNF-1α:

Hepatocyte nuclear factor-1 alpha

IHC:

Immunohistochemistry

MTX:

Methotrexate

SI:

Sucrase–isomaltase

References

  1. Bai YQ, Miyake S, Iwai T, Yuasa Y (2003) CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene. Oncogene 22:7942–7949

    Article  PubMed  CAS  Google Scholar 

  2. Boudreau F, Rings EH, van Wering HM, Kim RK, Swain GP, Krasinski SD, Moffett J, Grand RJ, Suh ER, Traber PG (2002) Hepatocyte nuclear factor-1 alpha, GATA-4, and caudal related homeodomain protein Cdx2 interact functionally to modulate intestinal gene transcription. Implication for the developmental regulation of the sucrase-isomaltase gene. J Biol Chem 277:31909–31917

    Article  PubMed  CAS  Google Scholar 

  3. Bromley M, Rew D, Becciolini A, Balzi M, Chadwick C, Hewitt D, Li YQ, Potten CS (1996) A comparison of proliferation markers (BrdUrd, Ki-67, PCNA) determined at each cell position in the crypts of normal human colonic mucosa. Eur J Histochem 40:89–100

    PubMed  CAS  Google Scholar 

  4. Carlsen H, Alexander G, Austenaa LM, Ebihara K, Blomhoff R (2004) Molecular imaging of the transcription factor NF-kappaB, a primary regulator of stress response. Mutat Res 551:199–211

    PubMed  CAS  Google Scholar 

  5. Clatworthy JP, Subramanian V (2001) Stem cells and the regulation of proliferation, differentiation and patterning in the intestinal epithelium: emerging insights from gene expression patterns, transgenic and gene ablation studies. Mech Dev 101:3–9

    Article  PubMed  CAS  Google Scholar 

  6. Duncan M, Grant G (2003) Oral and intestinal mucositis—causes and possible treatments. Aliment Pharmacol Ther 18:853–874

    Article  PubMed  CAS  Google Scholar 

  7. Fang R, Olds LC, Santiago NA, Sibley E (2001) GATA family transcription factors activate lactase gene promoter in intestinal Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 280:G58–G67

    PubMed  CAS  Google Scholar 

  8. Fitzgerald K, Bazar L, Avigan MI (1998) GATA-6 stimulates a cell line-specific activation element in the human lactase promoter. Am J Physiol 274:G314–G324

    PubMed  CAS  Google Scholar 

  9. Freund JN, Domon-Dell C, Kedinger M, Duluc I (1998) The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 76:957–969

    Article  PubMed  CAS  Google Scholar 

  10. Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21(WAF1/CIP1) gene. Exp Cell Res 246:280–289

    Article  PubMed  CAS  Google Scholar 

  11. Hinoi T, Loda M, Fearon ER (2003) Silencing of CDX2 expression in colon cancer via a dominant repression pathway. J Biol Chem 278:44608–44616

    Article  PubMed  CAS  Google Scholar 

  12. Ijiri K, Potten CS (1987) Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer 55:113–123

    PubMed  CAS  Google Scholar 

  13. Kim S, Domon-Dell C, Wang Q, Chung DH, Di Cristofano A, Pandolfi PP, Freund JN, Evers BM (2002) PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology 123:1163–1178

    Article  PubMed  CAS  Google Scholar 

  14. Mesquita P, Jonckheere N, Almeida R, Ducourouble MP, Serpa J, Silva E, Pigny P, Silva FS, Reis C, Silberg D, Van Seuningen I, David L (2003) Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines. J Biol Chem 278:51549–51556

    Article  PubMed  CAS  Google Scholar 

  15. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, −5, and −6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952

    Article  PubMed  CAS  Google Scholar 

  16. Naruhashi K, Nadai M, Nakao M, Suzuki N, Nabeshima T, Hasegawa T (2000) Changes in absorptive function of rat intestine injured by methotrexate. Clin Exp Pharmacol Physiol 27:980–986

    Article  PubMed  CAS  Google Scholar 

  17. Pinkerton CR, Cameron CH, Sloan JM, Glasgow JF, Gwevava NJ (1982) Jejunal crypt cell abnormalities associated with methotrexate treatment in children with acute lymphoblastic leukaemia. J Clin Pathol 35:1272–1277

    Article  PubMed  CAS  Google Scholar 

  18. Potten CS, Merritt A, Hickman J, Hall P, Faranda A (1994) Characterization of radiation-induced apoptosis in the small intestine and its biological implications. Int J Radiat Biol 65:71–78

    Article  PubMed  CAS  Google Scholar 

  19. Renes IB, Verburg M, Bulsing NP, Ferdinandusse S, Buller HA, Dekker J, Einerhand AW (2002) Protection of the Peyer’s patch-associated crypt and villus epithelium against methotrexate-induced damage is based on its distinct regulation of proliferation. J Pathol 198:60–68

    Article  PubMed  Google Scholar 

  20. Rings EH, Boudreau F, Taylor JK, Moffett J, Suh ER, Traber PG (2001) Phosphorylation of the serine 60 residue within the Cdx2 activation domain mediates its transactivation capacity. Gastroenterology 121:1437–1450

    Article  PubMed  CAS  Google Scholar 

  21. Rings EH, Krasinski SD, van Beers EH, Moorman AF, Dekker J, Montgomery RK, Grand RJ, Buller HA (1994) Restriction of lactase gene expression along the proximal-to-distal axis of rat small intestine occurs during postnatal development. Gastroenterology 106:1223–1232

    PubMed  CAS  Google Scholar 

  22. Ryffel GU (2001) Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol 27:11–29

    Article  PubMed  CAS  Google Scholar 

  23. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4:277–284

    Article  PubMed  CAS  Google Scholar 

  24. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025

    Article  PubMed  Google Scholar 

  25. Suh E, Traber PG (1996) An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol 16:619–625

    PubMed  CAS  Google Scholar 

  26. Taminiau JA, Gall DG, Hamilton JR (1980) Response of the rat small-intestine epithelium to methotrexate. Gut 21:486–492

    Article  PubMed  CAS  Google Scholar 

  27. Taylor JK, Boll W, Levy T, Suh E, Siang S, Mantei N, Traber PG (1997) Comparison of intestinal phospholipase A/lysophospholipase and sucrase-isomaltase genes suggest a common structure for enterocyte-specific promoters. DNA Cell Biol 16:1419–1428

    Article  PubMed  CAS  Google Scholar 

  28. Theon AP, Metzger L, Griffey S (1994) In situ analysis of cellular proliferation in canine, feline and equine tumors by immunohistochemistry: a comparison of bromodeoxyuridine, proliferating cell nuclear antigen, and interchromatin-associated antigen immunostaining techniques. J Vet Diagn Invest 6:453–457

    PubMed  CAS  Google Scholar 

  29. Uesaka T, Kageyama N, Watanabe H (2004) Identifying target genes regulated downstream of Cdx2 by microarray analysis. J Mol Biol 337:647–660

    Article  PubMed  CAS  Google Scholar 

  30. Van Beers EH, Buller HA, Grand RJ, Einerhand AW, Dekker J (1995) Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 30:197–262

    Article  PubMed  CAS  Google Scholar 

  31. Van Seuningen I, Ostrowski J, Bustelo XR, Sleath PR, Bomsztyk K (1995) The K protein domain that recruits the interleukin 1-responsive K protein kinase lies adjacent to a cluster of c-Src and Vav SH3-binding sites. Implications that K protein acts as a docking platform. J Biol Chem 270:26976–26985

    Article  PubMed  CAS  Google Scholar 

  32. Verburg M, Renes IB, Einerhand AW, Buller HA, Dekker J (2003) Isolation-stress increases small intestinal sensitivity to chemotherapy in rats. Gastroenterology 124:660–671

    Article  PubMed  Google Scholar 

  33. Verburg M, Renes IB, Meijer HP, Taminiau JA, Buller HA, Einerhand AW, Dekker J (2000) Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats. Am J Physiol Gastrointest Liver Physiol 279:G1037–G1047

    PubMed  CAS  Google Scholar 

  34. Verburg M, Renes IB, Van Nispen DJ, Ferdinandusse S, Jorritsma M, Buller HA, Einerhand AW, Dekker J (2002) Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration. J Histochem Cytochem 50:1525–1536

    PubMed  CAS  Google Scholar 

  35. Yeh KY, Yeh M, Montgomery RK, Grand RJ, Holt PR (1991) Cortisone and thyroxine modulate intestinal lactase and sucrase mRNA levels and activities in the suckling rat. Biochem Biophys Res Commun 180:174–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. K.Y. Yeh for kindly providing the rabbit polyclonal anti-rat sucrase–isomaltase antiserum. This work was supported by a grant from Numico Research BV, Wageningen, The Netherlands and from the Sophia Foundation for Medical Research (SSWO). E.H.H.M.R. is supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. E. de Koning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koning, B.A.E.d., Lindenbergh-Kortleve, D.J., Pieters, R. et al. The effect of cytostatic drug treatment on intestine-specific transcription factors Cdx2, GATA-4 and HNF-1α in mice. Cancer Chemother Pharmacol 57, 801–810 (2006). https://doi.org/10.1007/s00280-005-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0119-z

Keywords

Navigation